
DATA DRIVEN DEVICE FAILURE
PREDICTION

THESIS

Paul L. Jordan, 1st Lt, USAF

AFIT-ENG-MS-16-S-071

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Depart-
ment of Defense or the United States Government.

This material is declared a work of the U.S. Government and is not subject to copy-
right protection in the United States.

AFIT-ENG-MS-16-S-071

DATA DRIVEN DEVICE FAILURE PREDICTION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Paul L. Jordan, B.S.

1st Lt, USAF

September 2016

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-16-S-071

DATA DRIVEN DEVICE FAILURE PREDICTION

THESIS

Paul L. Jordan, B.S.
1st Lt, USAF

Committee Membership:

Dr. G. L. Peterson
Chair

Maj A. C. Lin, PhD
Member

Dr. M. J. Mendenhall
Member

Maj A. J. Sellers, PhD
Member

AFIT-ENG-MS-16-S-071

Abstract

As society becomes more dependent upon computer systems to perform increasingly

critical tasks, ensuring those systems do not fail also becomes more important. Many

organizations depend heavily on desktop computers for day to day operations. Un-

fortunately, the software that runs on these computers is still written by humans and

as such, is still subject to human error and consequent failure. A natural solution is

to use statistical machine learning to predict failure. However, since failure is still

a relatively rare event, obtaining labelled training data to train these models is not

trivial. This work presents new simulated fault loads with an automated framework

to predict failure in the Microsoft enterprise authentication service and Apache web

server in an effort to increase up-time and improve mission effectiveness. These new

fault loads were successful in creating realistic failure conditions that are accurately

identified by statistical learning models.

iv

Acknowledgments

Nothing worth doing is possible alone. This work is no exception. Thanks to my

advisors, course instructors, and committee members for working with me and guiding

me through this exciting endevour. Thanks to my fellow classmates for commiserating

with me through the unrelenting flood of coursework. Finally, but most importantly,

thanks to my wife for always being there, supporting my often erratic work schedule,

and making sure I never forgot to eat.

Paul L. Jordan

v

Table of Contents

Page

Abstract . iv

Acknowledgments . v

List of Figures . viii

List of Tables . ix

I. Introduction . 1

1.1 Problem Statement . 2
1.2 Hypothesis . 4
1.3 Research Goals . 5
1.4 Impact of Research . 5
1.5 Assumptions and Limitations . 6
1.6 Results . 6
1.7 Summary . 7

II. Overview of Online Failure Prediction (OFP) . 8

2.1 Background . 8
2.1.1 Definitions . 9

2.2 Approaches to OFP . 13
2.2.1 OFP Taxonomy . 13
2.2.2 Data-Driven OFP . 15
2.2.3 Industry Approaches to OFP. 18
2.2.4 Adaptive Failure Prediction (AFP) Framework 19

2.3 Summary . 20

III. Methodology . 22

3.1 Failure Data Generation . 22
3.1.1 Preparation Phase . 23
3.1.2 Execution Phase . 24
3.1.3 Training Phase . 26

3.2 Implementation of the AFP . 31
3.2.1 AFP Framework Implementation . 31
3.2.2 AFP Modules . 31
3.2.3 Controller Hypervisor . 33
3.2.4 Sandbox Hypervisor . 42
3.2.5 Target Hypervisor . 44

3.3 Extensions to the AFP . 45

vi

Page

3.3.1 Under-Resourced Central Processing Unit (CPU) 45
3.3.2 Under-Resourced Memory . 45
3.3.3 Heap Space Corruption . 46
3.3.4 Reported Errors . 46
3.3.5 Summary . 47

IV. Experimental Results and Analysis . 48

4.1 Performance Measures . 48
4.1.1 Precision and Recall . 49
4.1.2 False Positive Rate (FPR) and Specificity . 50
4.1.3 Negative Predictive Value (NPV) and Accuracy 51
4.1.4 Precision/Recall Curve . 51

4.2 Results . 53
4.2.1 Microsoft (MS) Domain Controller (DC) . 54
4.2.2 Web Server . 59
4.2.3 Summary . 61

V. Conclusion and Future Work . 62

5.1 Future Work . 62
5.2 Conclusion . 63

Appendix A. Windows Software Fault Injection Tool
(W-SWFIT) Source Code . 66

Appendix B. ResourceLeak Source Code . 84

Appendix C. Windows Updates . 89

Appendix D. List of Abbreviations . 91

Bibliography . 93

vii

List of Figures

Figure Page

1 Proactive Fault Management [1] . 9

2 Failure Flow Diagram [1] . 12

3 Online Failure Prediction (OFP) [1] . 12

4 Taxonomy of OFP Approaches . 14

5 Pattern recognition in reported errors [1] . 15

6 The Adaptive Failure Prediction (AFP) framework [2]. 19

7 AFP Execution Phase [2] . 25

8 AFP Training Phase [2] . 26

9 Annotated AFP Framework [2] . 32

10 Domain Controller Packets per Second . 40

11 Client Packets per Second . 40

12 Test 1: Domain Controller Performance . 41

13 Sample Precision/Recall Curves [1] . 52

14 Sample Receiver Operating Characteristic (ROC)
Plots [1] . 52

15 Pre-Update, Memory Leak Support Vector Machine
(SVM) Performance . 56

16 Pre-Update, Memory Leak Boosting Performance 58

17 Post-Update, Memory Leak Using Old Model
Performance . 58

18 Post-Update, Memory Leak Using New Model
Performance . 59

viii

List of Tables

Table Page

1 Example MSWinEventLog Authentication Message 29

2 Microsoft Log Message IDs . 29

3 Sample Data Window Translation . 29

4 Hypervisor 1 (Sandbox/Target) . 32

5 Hypervisor 2 (Controller) . 32

6 Fault Operators Injected [3] . 36

7 Funtion Entry/Exit Patterns (IA32) [3] . 37

8 Funtion Entry/Exit Patterns (x86-64) [3] . 37

9 Pre-Update, Memory Leak, Support Vector Machine
(SVM) Confusion Matrix . 55

10 Pre-Update, Memory Leak, Boosting Confusion Matrix 57

11 Post-Update, Memory Leak, Same Model, Confusion
Matrix . 58

12 Post-Update, Memory Leak, New Model, Confusion
Matrix . 58

13 Updates applied to Windows Server 2008 R2 x64 Edition. 89

ix

DATA DRIVEN DEVICE FAILURE PREDICTION

I. Introduction

As dependency upon computers grows, so too do the associated risks. Computer

systems are all around us. Some of these systems play insignificant roles in our lives

while others are responsible for sustaining our lives. Unfortunately, the software that

controls these systems is written by humans and consequently subject to human er-

ror. As a result, these systems are prone to failure, and in some cases that failure

has catastrophic consequences. Every day, critical infrastructure and Air Force mis-

sion systems depend on the reliability of computer systems. As a result, being able

to predict pending failure in computer systems can offer tremendous and potentially

life-saving applications in today’s technologically advanced world. There has been

significant work over the past several decades attempting to make educated predic-

tions about the failure of machines through the use of machine learning algorithms [1].

Unfortunately, much of this work has gone unused.

Failure has been defined as an undesirable event resulting from a software fault

or error [1]. There are a number of ways to reduce the number of errors produced

by a piece of software, but the software development life-cycle is shrinking, and less

time and effort are being devoted to reducing errors before deployment [4]. Real-time

error prevention or handling can address this deficiency. In recent years, it seems

the en vogue solution to this problem is to make massively redundant systems that

can withstand failure [5]. As hardware becomes more affordable, this is an effective

approach in many ways, but ultimately is still not cost efficient. Consequently, this

research focuses on a small piece of the general field of reliable computing: Online

1

Failure Prediction (OFP). OFP is the act of attempting to predict when failures are

likely so that they can be avoided. Chapter II outlines the recent work done in this

field, much of which is not done in production environments due to the complex

and manual task of training a prediction model. If the underlying system changes,

the efficacy of a prediction model can be drastically reduced until it is retrained.

Furthermore, training requires access to labelled training data. Since failure is such

a rare event, access to this type of training data may not be possible.

Irrera, et al. [2] presented a framework in 2015 to automate the process of dy-

namically generating failure data and using it to train a predictor after an underlying

system change. This framework is called the Adaptive Failure Prediction (AFP)

framework and this research explores an implementation of it. More specifically, this

research presents results after implementing a modernized AFP framework using a

Microsoft (MS) Windows Server Domain Controller (DC) that is capable of generat-

ing more diverse and specific failure data for training. Successive software updates are

then applied until the model selected becomes useless, the framework is then allowed

to re-train a new more effective predictor. Finally, the implementation is validated

by running the same experiment on a web server.

1.1 Problem Statement

According to the operational community, predicting and alerting against impend-

ing network service failures currently uses thresholds and rules on discrete items in

enterprise system logs. For example, if the Central Processing Unit (CPU) and mem-

ory usage on a device exceeds 90%, then an alert may be issued. This approach works,

but only for certain types of failures. In order to minimize the false positives, it only

makes recommendations when the system has already entered a degraded performance

mode. To maintain network resilience, the operational organizations responsible for

2

communications support desperately need some means of gaining prediction accuracy

and lead-time before a service failure or degradation occurs.

To increase that lead time and make more accurate predictions, this research

explores predicting failure by analyzing data reported by a target system. Preceding

a service failure event, multiple indicators from disparate sources, perhaps over a

long period of time, may appear in system logs. The log entries of interest are also

quite rare compared with normal operations. Because of these constraints, identifying

failure indicators can be nearly impossible for humans to perform. Further, in most

cases, restoring service is more important than identifying the indicators that may or

may not have existed.

Failure prediction can be approached in several ways. For example, the simplest

approach is to use everyday statistical analysis to determine the mean time between

failures of specific components. The analysis of all components making up a system

can be aggregated to make predictions about that system using a set of statistics-based

or business-relevant rules. Unfortunately, the complexity of modern architectures

has outpaced such static statistical-based analysis. OFP differs from other means

of failure prediction in that it focuses on classifying the current running state of a

machine as either failure prone or not, or in such a way that it describes the confidence

in how failure prone a system is at a given moment in time [1].

In recent years much of the work in OFP has gone unused due to the dramatic

decrease in cost and complexity involved in building hardware-based redundant sys-

tems [2]. Furthermore, in most cases, OFP implements machine learning algorithms

that require manual re-training after underlying system changes. More troubling is

that system changes are becoming more frequent as the software development life cy-

cle moves toward a more continuous integration model. To help solve these challenges,

Irrera, et al. [2] introduced a framework that uses simulated faults to automatically

3

re-train a prediction algorithm to make implementing OFP approaches easier. This

work extends that framework to capture developments since its writing and general-

ize it so it works for a broader class of devices by exploring and developing the fault

load. Specifically, this work explores additional and more realistic types of faults,

modernizes the fault injection tool by translating it from the IA32 architecture to the

x86-64 architecture, and explores the use of reported errors or log messages instead

of system health information.

1.2 Hypothesis

An implementation of the AFP framework with a more representative fault load

for the MS Windows enterprise infrastructure using data in log messages is hypoth-

esized to lead to accurate failure prediction with better lead time than is available

today without any prediction model. This hypothesis is tested by implementing the

AFP framework in a scaled virtual environment and evaluating its performance after

successive software updates. To validate the approach, the same AFP framework

implementation is evaluated against an Apache web server.

Specifically, additional fault loads are explored because in modern versions of the

Windows operating system, there are hundreds of thousands of possible fault injection

points. Finding one that will be activated in a realistic way can be difficult. Prior to

this research, the faults produced and consequently predicted by the AFP framework

were difficult to find and also were the result of first-order faults. This research

evaluates the performance of the AFP framework when targeted second and third

order faults are introduced. Additionally, the implementation of the AFP framework

was not possible on modern MS Windows infrastructure because the fault injection

tool used had not been written for the x86-64 architecture. Further, it was incapable

of injecting faults in protected system processes.

4

Finally, the initial case study of the AFP framework used system health infor-

mation to train the prediction model. As is pointed out by Salfner, et al. [1], this

sort of prediction may have difficulty distinguishing between normal operations and

actual errors which may evolve into failure. This work explores the use of reported

errors to train the model instead to overcome this shortcoming. It is expected that

this modification will allow for more accurate predictions.

1.3 Research Goals

A goal of this research is to develop a machine learning based failure prediction

model to predict failures in enterprise network services. This research should demon-

strate the efficacy of the AFP framework and proposed extensions when used on the

MS Windows enterprise architecture. A long-term goal of this research is to drive the

improvement of the AFP framework and increase its adoption and resulting cost sav-

ings. In the near-term, the increased representativeness of the faults generated should

lead to better predictions and increased availability in enterprise services. Finally, the

translation of the IA32 General Software Fault Injection Technique (G-SWFIT) tool

to the x86-64 architecture should enable the same advantages of software fault injec-

tion for 32-bit systems on 64-bit systems [3].

1.4 Impact of Research

Every day, many of the Air Force’s critical missions depend on computer infras-

tructure. An essential piece of this infrastructure is the authentication mechanisms

that protect sensitive information. Unfortunately, the software at the core of this in-

frastructure is written and maintained by humans and thus susceptible human error.

This research will enable the Air Force and many others that use the MS Enterprise

Infrastructure to accurately predict pending service outages thereby providing lead-

5

time in order to avoid those outages. The result is cost savings in personnel and

equipment. Further advantages are difficult to quantify such as a decreased risk of

mission failure due to network service outage.

1.5 Assumptions and Limitations

This research assumes indicators of failure are present and available with enough

lead-time to accurately make decisions and take mitigation action should failure be

predicted based on these indicators. Furthermore, it has not been proven possible to

accurately predict future events without a priori knowledge. This research presents

a method of predicting failure, but this method is completely useless at predicting

act of God events. Finally, this method is capable of predicting system failure based

on underlying software faults and not indicators about malicious attacks against the

target system.

1.6 Results

This research shows that the additional fault loads used in conjunction with the

modernized AFP framework enable the generation of failure data that can be used

to train predictors to alert on pending failure with better precision and recall than

is currently available today. Furthermore, without this modernization, the use of the

AFP framework would not have been possible on modern MS Windows operating

systems. The results of this work demonstrate the effectiveness of the approach by

showing that these new fault loads and modernized framework work on both the MS

DC as well as a MS web server.

This research also shows that after an underlying system change, this method

of predicting failure is capable of automatically training a more effective prediction

algorithm so that this technique can be implemented on an Air Force network with

6

little to no impact on manpower. Consequently, it is expected that this research will

inform decision makers and allow them to implement this technique in a production

environment.

1.7 Summary

This work outlines a technique that is effective in predicting failure in modern

MS Windows systems that can adapt to underlying system changes. The remain-

der of this document will outline exactly how this modernization and the additional

fault loads were implemented and tested. The impact of this work is that it could

readily be adapted and implemented in many enterprise system architectures with

little manpower burden. Specifically, in the Air Force, it could most effectively be

implemented and used by the Cyber Security and Control System (CSCS) weapon

system employed at the 561st and 83d Network Operation Squadrons (NOS) and their

associated detachments to reduce the number of network service outages, increasing

uptime, leading to improved mission effectiveness in both the support and operational

domains. Finally, this technique is general enough to be employed outside of the Air

Force to increase mission effectiveness across the Department of Defense (DOD). Ex-

ternal to the DOD, this research further generalizes an approach that could be used

to help increase availability of nearly any computer system.

7

II. Overview of Online Failure Prediction (OFP)

Traditionally, failure is predicted using statistical information about past failures

offline before a system is implemented. Unfortunately, given the complexity of mod-

ern computer systems and the nearly infinite number of ways in which they can be

configured, this sort of offline analysis is not helpful. OFP is the act of evaluating a

running system in real time to make a prediction about what the future state will be.

This chapter reviews current research regarding OFP and its many approaches to

build a foundation for this research. Further, the taxonomy of approaches developed

by Salfner, et al. [1], is updated by classifying approaches since its publication and

creating a new sub-category. The rest of this chapter is organized as follows. In

Section 2.1, a brief background on the topic of OFP is given including definitions,

terminology, and measures of performance used by the community. In Section 2.2,

the approaches relevant to this research are presented. This chapter then concludes

with a brief summary.

2.1 Background

In 2010, Salfner, et al. [1] published a survey paper that provides a comprehensive

summary of the state of the art on the topic of OFP. In addition to the review of

the literature up to the point of publication, they provide a summary of definitions

and measures of performance commonly used in the community for couching the

OFP discussion. The remainder of this section reviews those definitions to build a

foundation for the rest of this work.

8

2.1.1 Definitions.

2.1.1.1 Proactive Fault Management (PFM).

Salfner, et al. [1] define PFM as the process by which faults are handled in a

proactive way, analogous with fault tolerance and basically consisting of four steps:

OFP, diagnosis, action scheduling, and action execution as shown in Figure 1. The

final three stages of PFM define how much lead time is required to avoid a failure

when predicted during OFP. Lead time is defined as the time between when failure

is predicted and when that failure will occur. Lead time is one of the most critical

elements of a failure prediction approach.

OFP is defined as the first step in PFM shown in Figure 1. OFP is the act of

analyzing the running state of a system in order to predict failure in that system.

Once failure has been predicted, a fault tolerant system must determine what will

cause the failure. This stage is called the diagnosis stage or “root-cause analysis”

stage. During the diagnosis stage, analysis must be conducted to identify possible

remediation actions. After it is determined what will cause a failure, a fault tolerant

system must schedule a remediation action that is either performed by an opera-

tor or done automatically. This stage is known as the action scheduling stage and

normally takes as input the cost of performing an action, confidence in prediction,

effectiveness/complexity of remedy action and makes a decision about what action

to perform based on that input. In some cases a remedy action can be so simple

Figure 1. The stages of proactive fault management [1].

9

that even if the confidence in the prediction is low, the action can still be performed

with little impact on the overall system and its users. A thorough analysis of the

trade-off between cost of avoidance and confidence in prediction and the associated

benefits is described in [6]. Finally, in order to avoid failure, a system must execute

the scheduled remediation action or let an operator know which actions can be taken

in a stage called action execution.

2.1.1.2 Faults, Errors, Symptoms, and Failures.

This research uses the definitions from [7] as interpreted and extended in [1] for

the following terms: failure; error (detected versus undetected); fault; and symptom.

Failure is an event that occurs when the delivered service deviates from correct

service. In other words, things can go wrong internally; as long as the output of a

system is what is expected, failure has not occurred.

An error is the part of the total state of the system that may lead to its subsequent

service failure. Errors are characterized as the point when things go wrong [1]. Fault

tolerant systems can handle errors without necessarily evolving into failure. There

are two kinds of errors. First, a detected error is an error that is reported to a

logging service. In other words, if it can be seen in a log then it is a detected error.

Second, undetected errors are errors that have not been identified by an error detector.

Undetected errors are things like memory leaks. The error exists, but as long as there

is usable memory, it is not likely to be reported to a logging service. Once the system

runs out of usable memory, undetected errors will likely appear in logs and become a

detected errors. A fault is the hypothesized root cause of an error. Faults can remain

dormant for some time before manifesting themselves and causing an incorrect system

state. In the memory leak example, the missing free statement in the source code

would be the fault.

10

A symptom is an out-of-norm behavior of a system’s parameters caused by errors,

whether detected or undetected. In the memory leak example, a possible symptom of

the error might be delayed response times due to sluggish performance of the overall

system.

Figure 2 illustrates how a software fault can evolve into a failure. Faults, errors,

symptoms, and failures can be further categorized by how they are detected also

shown in Figure 2. Salfner, et al. [1] introduces a taxonomy of OFP approaches and

classifies failure prediction approaches by the stage at which a fault is detected as it

evolves into a failure: auditing, reporting, monitoring, and tracking. Testing is left

out because it does not help detect faults in an online sense.

Figure 3 demonstrates the timeline associated with OFP. The parameters used by

the community to define a predictor are as follows:

• Present Time: t

• Data Window: ∆td, represents the time window of data used for a predictor to

make its assessment.

• Minimal Warning Time: ∆tw, is the amount of time required to avoid a failure

if one is predicted.

• Lead Time: ∆tl, represents the time between when failure is predicted and

when that failure will occur.

• Prediction Period: ∆tp, is the time for which a prediction is valid. As ∆tp →

∞, the accuracy of the predictor approaches 100% because every system will

eventually fail. As this happens, the usefulness of a predictor is diminished.

As the above parameters are adjusted, predictors can become more or less useful.

For example, it is clear that as a predictor looks further into the future potentially

11

Figure 2. How faults and errors evolve into failure with the associated methods for
detection represented by enclosing gray boxes [1].

Figure 3. The timeline for OFP [1].

12

increasing lead time, confidence in its prediction is likely to be reduced. On the other

hand, if lead time is too small, or ∆tl < ∆tw, there will likely not be enough time to

effectively take remediation action. In general, OFP approaches seek to find a balance

between the parameters, within an acceptable bound depending on application, to

achieve the best possible performance.

2.2 Approaches to OFP

2.2.1 OFP Taxonomy.

The taxonomy by Salfner, et al. [1] classifies many of the OFP approaches in the

literature into four major categories. These four major categories are defined by the

four techniques used to detect faults in real-time: auditing, monitoring, reporting,

and tracking as illustrated in Figure 2. The taxonomy is shown in Figure 4.

Since this research focusses on real-time data-driven device failure prediction ap-

proaches, our focus is on the reporting category of Salfner’s taxonomy. The reporting

category organizes failure prediction techniques that attempt to classify a state as

failure prone based on reported errors. This is different from prediction methods

that rely on observing the current state of a machine such as auditing and monitor-

ing. As pointed out by Salfner, et al. [1], in general these methods have difficulty

distinguishing a system under peak load and one that may be about to fail.

The reporting category of the taxonomy is further organized into five sub-categories:

rule-based systems; co-occurrence; pattern recognition; statistical tests; and classi-

fiers.

Rule-Based Systems attempt to classify a system as being failure-prone or not

based a set of conditions met by reported errors. Since modern systems are far too

complex to build a set of conditions manually, these approaches seek to find auto-

mated ways of identifying these conditions in training data. Co-occurrence predictors

13

Figure 4. Taxonomy of approaches to online failure prediction [1]. The two categories
into which this research falls are highlighted.

14

generate failure predictions based on the reported errors that occur either spatially or

temporally close together. Pattern Recognition predictors attempt to classify patterns

of reported errors as failure prone. Statistical Tests attempt to classify a system as

failure-prone based on statistical analysis of historical data. For example, if a system

is generating a much larger volume of error reports than it typically does, it may be

a sign of pending failure. Classifiers assign labels to given sets of error reports in

training data and then make failure predictions based on observed labels in real-time

data.

This research focusses on pattern recognition OFP approaches, which are shown

in Figure 5. Strategies employed in the other sub-categories are closely related and

thus are also explored in this research.

2.2.2 Data-Driven OFP.

2.2.2.1 Pattern Recognition.

Salfner, et al. [8] proposed an approach to predicting failures by learning patterns

of similar events using a semi-Markov chain model. The model learned patterns of

error reports that led to failure by mapping the reported errors to the states in the

Markov chain and predicted the probability of the transition to a failure-prone state.

They tested the model using performance failures of a telecommunication system

and reported a precision of 0.8, recall of 0.923, and an F-measure of 0.8571, which

drastically outperformed the models to which it was compared.

Figure 5. How pattern recognition is accomplished in reported errors [1].

15

Given the results, the semi-Markov Chain model is compelling however, it de-

pends on the sequence of reported errors to remain constant in order to be effective.

Today, most software is multi-threaded or distributed so there is no guarantee that

the sequence of reported errors will remain constant. Further, the authors reported

that this approach did not scale well as the complexity of the reported errors grew.

In 2007, Salfner, et al. extended their previous work in [8] using semi-Markov

models [9]. They generalized the Hidden Semi-Markov process for a continuous-

time model and called it the Generalized Hidden Semi-Markov Model (GHSMM). By

making this generalization, the model was able to effectively predict the sequence of

similar events (or in this case, errors) in the continuous time domain. The authors

then tested the model and training algorithm using telecommunication performance

failure data and compared it to three other approaches. While this GHSMM model

did not perform as well as their previous work, it did outperform the models to which

it was compared and more importantly did not depend on the sequence of reported

errors. In other words, this new GHSMM model predicted failure for permutations

of a known failure-prone sequence making it more suited for a distributed or parallel

system.

The GHSMM approach has been well received by the community, although ap-

pears to be limited in use to a single system. Unfortunately, this approach as well as

its predecessor, does not scale well and does not adapt to changes to the underlying

system without retraining.

2.2.2.2 Classifiers.

Domeniconi, et al. [10] published a technique that used a Support Vector Machine

(SVM) to classify the present state as either failure prone or not based on a window

of error reports as an input vector. As Salfner points out in [1], this SVM approach

16

would not be useful without some sort of transformation of the input vector since

the exact same sequence of error messages, rotated by one message, would not be

classified as similar. To solve this permutation challenge, the authors in [10] used

singular value decomposition to isolate the sequence of error reports that led to a

failure.

This SVM approach used training data from a production computer environment

with 750 hosts over a period of 30 days. The types of failures the system was trying

to detect was the inability to route to a web-page and an arbitrary node being down.

Many approaches involving SVMs have been explored since and seem to be popular

in the community [2, 10–13].

2.2.2.3 Hybrid Approaches.

Fujitsu Labs has published several papers on an approach for predicting failure

in a cloud-computing environment [14–16]. Watanabe, et al. [15, 16] report on find-

ings after applying a Bayesian learning approach to detect patterns in similar log

messages. Their approach abstracts the log messages by breaking them down into

single words and categorizing them based on the number of identical words between

multiple messages. This hybrid approach removes the details from the messages, like

node identifier, and Internet Protocol (IP) address while retaining meaning of the log

message.

Watanabe et al.’s [16] hybrid approach attempts to solve the problem of underlying

system changes by learning new patterns of messages in real-time. As new messages

come in, the model actively updates the probability of failure by Bayesian inference

based on the number of messages of a certain type that have occurred within a certain

time window. The authors claim that their approach solves three problems: 1) The

model is not dependent upon a certain lexicon used to report errors to handle different

17

messages from different vendors; 2) The model does not take into account the order of

messages so that in a distributed environment where messages may arrive in different

orders, the model is still effective; and 3) The model actively retrains itself so manual

re-training does not need to occur after system updates. The model was then tested

in a cloud environment over a ninety day period. The authors reported a precision

of 0.8 and a recall of 0.9, resulting in an F-measure of 0.847.

Fronza, et al. [11] introduced a pattern-recognition/classifier hybrid approach that

used an SVM to detect patterns in log messages that would lead to failure. The

authors used random indexing to solve the problem previously discussed of SVMs

failing to classify two sequences as similar if they are offset by one error report. The

authors report that their predictor was able to almost perfectly detect non-failure

conditions but was poor at identifying failures. The authors then weighted the SVMs

to account for this discrepancy by assigning a larger penalty for false negatives than

false positives and had better results.

2.2.3 Industry Approaches to OFP.

Because hardware has become so easy to acquire, industry has sought to avoid

the problem of software failure by implementing massive redundancy in their systems.

The work in [2, 16] attributes the problem avoidance to the fact that until recently,

implementing and maintaining a failure predictor was difficult. As we decrease the

length of the software development life cycle, software updates are being published

with increasing frequency leading to rapid changes in underlying systems. These

changes can often render a predictor useless without re-training, which is often a

manual and resource intensive process.

Redundancy is not without problems however. Implementing redundant systems

to avoid the failure problem can be expensive and can add overhead and complexity

18

making a system more difficult to manage.

2.2.4 Adaptive Failure Prediction (AFP) Framework.

The AFP framework by Irrera, et al. [2] shown in Figure 6, presents a new approach

to maintaining the efficacy of failure predictors given underlying system changes. The

authors conducted a case study implementing the framework using virtualization and

fault injection on a web server.

Figure 6. The AFP framework [2].

The framework built upon past work by Irrera, et al. [17, 18] to generate failure

data by injecting software faults using a tool based on General Software Fault Injection

Technique (G-SWFIT) [3] in a virtual environment for comparing and automatically

re-training predictors. With the introduction of the framework, Irrera, et al. [2] report

19

results of a case-study. After implementing the AFP framework using a web server

and an SVM predictor, they report that their findings demonstrate their framework

is able to adapt to changes to an underlying system which would normally render a

predictor unusable.

In general, the use of simulated data is not well received by the community, how-

ever the authors in [18,19] report evidence supporting the claim that simulated failure

data is representative of real failure data. Further, the authors suggest that since sys-

tems are so frequently updated and failures are in general rare events, real failure

data is often not available. Moreover, the literature shows that even if there is a

certain type of failure in training data and a predictor can detect and predict that

type of error accurately, it will still miss failures not present in the training data. By

injecting the types of faults that one can expect, each failure type is represented in

the training data.

Irrera, et al. [2] reported good results and concluded that the AFP framework

is an effective tool. Unfortunately, the AFP framework is not a universal solution

and requires significant work to be implemented on a modern Microsoft (MS) Win-

dows enterprise network. Furthermore, the fault load previously explored does not

completely represent all possible failures [20].

2.3 Summary

This chapter covered the definitions, measures of performance, and approaches

that are relevant to this research as organized under the subsection of reporting

within the OFP field of study. There has been a tremendous amount of research

surrounding the topic of OFP and many prediction approaches have been presented.

Unfortunately, these approaches do not appear on modern operational systems and

failures are still relatively prevalent. Recent approaches as covered here have sought

20

to make predictors more adaptive to the changes in underlying systems in an effort to

make implementing existing failure predictors easier. In this work, we plan to extend

the AFP framework and further generalize the approach.

21

III. Methodology

The purpose of the Adaptive Failure Prediction (AFP) framework is to automate

the generation of realistic labelled failure data for the purposes of automatically train-

ing a failure prediction algorithm. The framework breaks down into modules so that

it can be more easily adapted for different applications. This chapter presents three

topics. The first describes the process that the framework executes in order to gen-

erate the labelled training data and train a failure prediction algorithm. The second

describes each module of the extended AFP framework. The final section details

extensions to the AFP framework explored by this research.

This chapter outlines the implementation and extensions to the AFP framework [2]

as well as an experiment that was conducted to validate those extensions and further

generalize the framework. The AFP framework was originally tested on a single

system running an operating system that has been deprecated. Consequently, the

results from the case study conducted using the AFP framework are limited in utility

and require generalization to be useful to the general community.

3.1 Failure Data Generation

This work extends the AFP framework [2] by presenting results after conduct-

ing another case study with an Microsoft (MS) Windows Server acting as an Active

Directory (AD) service with a more representative fault load as well as a new imple-

mentation of the General Software Fault Injection Technique (G-SWFIT) technique

for the x86-64 architecture.

The case study was done using three new types of faults: third-party memory leak,

third-party Central Processing Unit (CPU) hog, and process memory corruption. For

completeness, the standard G-SWFIT technique was also used. Another important

22

modification was made in the actual data collected. The original case study used

status and machine state information polled every second. Salner et al. [1] points

out that this technique does not properly distinguish between underlying errors and

normal workload. In this case study, reported errors are used instead.

Finally, findings are reported after implementing this framework using two differ-

ent statistical machine learning techniques on reported errors (log messages): boosted

decision trees and the weighted Support Vector Machine (SVM). The weighted SVM

was used because of it performs well on imbalanced data and it is popular in the

Online Failure Prediction (OFP) community [1]. The boosted decision tree was used

because it is non-parametric, it is capable of classification, and it is particularly suited

for imbalanced data. In both cases, feature reduction was performed using the ap-

proach by Fulp et al. [12], of a restriction to a sliding time window. Irrera, et al. [21]

and Vaarandi [22] follow a similar approach.

This section outlines the step-by-step procedure by which the extended AFP

framework was evaluated to show how effective it is when used on Windows Server

deployments. This is done by dividing the steps taken in the experiment into the

three major phases as defined in [2]: preparation phase, execution phase, and train-

ing phase.

3.1.1 Preparation Phase.

In this phase the AFP framework is prepared to run for the first time as described

in [2]. The Cross Industry Standard Process for Data Mining (CRISP-DM) [23]

should be applied to this situation when evaluating how to best apply the AFP for

a particular target. For the purposes of this research, the focus was on the MS

Windows Directory Services and predicting failure in those services. To demonstrate

the efficacy of the AFP, a predictor was evaluated before and after a significant

23

software update. As a result, the most critical preparation made in evaluating this

framework was to hold back all software updates on the target system prior to the

first run of the execution phase. The performance of various prediction techniques

was evaluated both before and after the Windows Update application was allowed to

run. A complete list of the updates installed is shown in Appendix C.

This phase is essentially comprised of the manual act of implementing the frame-

work. Each module of the implementation for this work is detailed in Section 3.2 and

is therefore not discussed further here.

3.1.2 Execution Phase.

A general outline of this phase is shown in Figure 7. This phase is divided into

three major steps: data collection and failure prediction, event checking, and train-

ing/update as described in this section.

3.1.2.1 Data Collection and Failure Prediction.

In this phase, the system has a working predictor providing input to some sort of

decision system. It should be noted here that this decision system does not have to be

automated. The system in this phase makes failure predictions about the current state

based on the last run of the training phase. This function was not implemented in this

research as it is application specific. The output of this process in this experiment

was a warning message indicating a predicted failure.

3.1.2.2 Event Checking.

Concurrent with the data collection and failure prediction sub-phase, the AFP

framework continuously monitors events that may alter the underlying system. The

output of each episode of this phase is a binary decision to either begin the training

24

Figure 7. The flow of the major steps involved in the AFP framework execution
phase [2].

phase, or not. For this experiment, these events were software updates and the

training phase was manually triggered upon completion of these updates.

3.1.2.3 Failure Predictor (Re-)Training and Update.

The purpose of this sub-phase is to initiate the training phase and compare its

results (a new predictor) with the currently employed predictor. Should the new

predictor perform better, the old predictor is replaced by the new. In this experiment,

25

this phase was accomplished manually.

3.1.3 Training Phase.

The training phase is broken down into five major steps: target replication, data

generation & collection, dataset building, predictor training, and analysis. The gen-

eral flow is shown in Figure 8. Each phase is outlined in the following sub-sections.

Figure 8. The flow of the major steps involved in the AFP framework training phase [2].

3.1.3.1 Target Replication.

During this phase a virtual clone of the target is made. After the clone is made, the

fault injection and monitoring software is installed. In this experiment, the monitoring

26

tool was the same as was already installed on the production system so the extra step

of installing the monitoring software was unnecessary.

3.1.3.2 Data Generation & Collection.

The purpose of this phase is to generate the data to train a new prediction al-

gorithm. As a result, this sub-phase must be executed several times to generate

statistically meaningful datasets. In this phase, the controller triggers the cloned

target startup. Once startup is complete and the system enters an idle state, the

monitoring tool begins collecting data from the target. After monitoring has begun,

the workload is started. Once the workload has entered a steady state, the fault load

is started. Finally, when failure occurs, monitoring stops, the workload stops, and

the system is rebooted for the next run. To generate golden data (or data with no

failures present to aid training), the first run prevents the fault injection tool from

actually injecting faults. The golden runs help establish a baseline that includes the

execution of the fault injection tool.

The most critical part of this process is labelling the data when failure occurs.

For the purposes of this experiment, failure was defined by the log message ID 4625:

An account failed to log on1. When this occurred in conjunction with known valid

credentials on an enabled account, the preceding data window defined for the experi-

ment was labelled as failure prone. Additionally, the workload generator used in this

research reported when authentication failed and transmitted a syslog message to the

controller.

3.1.3.3 Dataset Building.

In this phase, the raw syslog messages are formatted and encoded to train the

prediction model. The purpose of this phase is to prepare the raw messages to be

1https://support.microsoft.com/en-us/kb/977519

27

https://support.microsoft.com/en-us/kb/977519

used as numeric inputs for the training phase. Irrera, et al. [2] loaded all data into

a database for processing. In this work, the events were stored in a flat file on the

Ubuntu machine by the syslog server daemon. An example of one of these messages

is shown below:

May 8 14:31:52 dc.afnet.com MSWinEventLog 5 Security 3 Sun May 08 14:31:50 2016 4672 Microsoft-

Windows-Security-Auditing N/A Audit Success dc.afnet.com 12548 Special privileges assigned to new

logon. Subject: Security ID: S-1-5-21-2379403389-181978965-2953995107-500 Account Name:

Administrator Account Domain: AFNET Logon ID: 0x9beb4e7a Privileges: SeSecurityPrivilege

SeBackupPrivilege SeRestorePrivilege SeTakeOwnershipPrivilege SeDebugPrivilege

SeSystemEnvironmentPrivilege SeLoadDriverPrivilege SeImpersonatePrivilege

SeEnableDelegationPrivilege

The messages were formatted using the Snare2 MSWinEventLog format which is

generally divided into several categories. The first is the time-stamp and host name of

the sender prepended by the syslog server daemon: May 8 14:31:52 dc.afnet.com. The

remainder of the message contains tab delimited values where the keys (and conse-

quent features) are shown in Table 1. Of these features, Criticality, EventLogSource,

EventID, SourceName, and CategoryString were selected for further encoding.

The raw messages were then encoded. First, the events were filtered by EventID as

is done by Fulp et al. [12] to reduce the noise generated by successful login attempts.

Log messages with IDs shown in Table 2 were filtered from the input.

Next, to encode the time dimension and reduce the sequential message ordering

dependency, a sliding time window was created by counting each unique entry for each

feature within the data window (∆td) as is done by Vaarandi [22]. During this stage,

the number of messages that were reported in the data window were also recorded

and used as a feature.

Finally, each time window preceding the failure within ∆tl was labelled as failure

prone as is done by Irrera, et al. [2]. This encoding enables the use of classification

algorithms in the training phase. An example of the final encoding is shown in Table 3.

2http://wiki.rsyslog.com/index.php/Snare_and_rsyslog

28

http://wiki.rsyslog.com/index.php/Snare_and_rsyslog

Table 1. Typical authentication message sent as keys that correspond to the values as
designated in the Snare protocol for MSWinEventLog used by the SolarWinds syslog
agent.

Key Value

HostName dc.afnet.com
Criticality 5
EventLogSource Security
Counter 3
SubmitTime Sun May 08 14:31:50 2016
EventID 4672
SourceName Microsoft-Windows-Security-Auditing
UserName N/A
SIDType Audit Success
EventLogType dc.afnet.com
ComputerName 12548
CategoryString Special privileges assigned to. . .
ExtendedDataString Security ID: S-1-5-21-2379403. . .

Table 2. Microsoft log message IDs filtered from data collection3.

ID Message

4624 An account was successfully logged on.
4634 An account was logged off.
4672 Special privileges assigned to new logon.
4769 A Kerberos service ticket was requested.
4770 A Kerberos service ticket was renewed.
4776 The computer attempted to validate the credentials for an account.

Table 3. Sample message data window after translation.

Predictor Value

FailureWindow 0
NumObservations 2
Criticality: 6 2
Criticality: 2 0
Criticality: 4 0
EventLogSource: Application 1
EventLogSource: System 1

29

3.1.3.4 Predictor Training.

The purpose of this phase is to use the data generated by the forced failure of

the virtual clone to train a machine learning algorithm to classify a system as failure

prone or not.

In this experiment, the execution phase was run k times. During this phase, each

of the k datasets produced by the k runs of the execution phase (each containing

a single failure), were used to train a statistical classification model. Each dataset

was an n× p matrix where n was the number of sliding time windows and p was the

number of predictors present in the output of the dataset building phase. These k

datasets were used to conduct a k − 1-fold cross validation training and evaluation

process where the first k − 2 datasets were used to train the statistical model. The

remaining set was used to validate the trained model. The data was then rotated

and the process was repeated k − 1 times. Parameters for the classification model

were selected based on the output of this cross validation. Finally, statistics and

performance on the final model’s performance on the held out data set were recorded.

3.1.3.5 Analysis.

During this phase, the precision, recall, f-measure, and area under the Receiver

Operating Characteristic (ROC) curve are computed using the figures measured in

the previous phase so that the new predictor can be compared against the old. If a

new predictor outperforms the old, the old is replaced with the new. Upon completion

of this phase, control flow returns to the Event Checking phase. In this phase, this

analysis was done manually.

3https://support.microsoft.com/en-us/kb/977519

30

https://support.microsoft.com/en-us/kb/977519

3.2 Implementation of the AFP

3.2.1 AFP Framework Implementation.

This experiment replicated the experiment in [2] with the following modifications.

Most importantly, since the focus of this research is on reported errors, log messages

were used to train the predictor as is done in many other recent approaches [9, 10,

12, 16]. Instead of only using fault injection to induce failure, three additional fault

loads were explored. In addition to using the SVM model, boosted decision trees

were evaluated. Finally, in addition to the Apache web-server, the primary target

was the MS Windows Server running AD Domain Services. The purpose of Apache

web server was to validate the approach and additional fault loads. The original

AFP architecture is shown in Figure 9 with the parts that were modified in this work

highlighted.

3.2.2 AFP Modules.

Irrera, et al. [2] outline multiple modules into which they have broken the AFP

framework for organizational purposes. This research does not modify these modules,

instead, it takes a more granular approach and presents a modified architecture and

details each element of that architecture.

The following sections detail the virtual environment in which this architecture

was constructed. For reference, this virtual environment was hosted on two VMWare

ESXi 5.5 hypervisors each with two 2.6 Gigahertz (GHz) AMD Opteron 4180 (6 cores

each) CPUs and 64 Gigabyte (GB) memory. The specifications of the individual

Virtual Machine (VM)s are shown in Tables 4 and 5.

31

3.2.3.1

3.2.3.2

3.2.3.3

3.2.3.4

3.2.3.5

3.2.3

3.2.4

3.2.4.1

3.2.4.2

3.2.4.3 3.2.5.1

3.2.5

Figure 9. The AFP framework implementation [2] with modified components high-
lighted.

Table 4. Hypervisor 1 configuration (sandbox/target).

Qty. Role Operating System CPU / Mem.

1 DC Win. Server 2008 R2 2 / 2 GB
1 Web Win. Server 2008 R2 2 / 2 GB
5 Client Win. 7 1 / 512 MB

Table 5. Hypervisor 2 configuration (controller).

Qty. Role Operating System CPU / Mem.

1 RDP Win. Server 2008 R2 1 / 4 GB
1 Log Ubuntu 14.04 LTS 1 / 1 GB

32

3.2.3 Controller Hypervisor.

The controller responsibilities in this experiment were split between two systems

on a single hypervisor shown in Table 5. One system was the MS Windows Server

responsible for workload management and fault injection management. The other

system was an Ubuntu 14.04 server that performed the failure prediction management

and event management. Each of these functions is detailed in the following sections.

3.2.3.1 Failure Prediction.

The failure prediction module predicts failure using machine learning algorithms

trained using the labelled training data generated by the rest of this framework.

This module is constantly either training a new predictor because a software update

occurred, or predicting failure based on log messages and possibly other features

produced by the production system.

In the original case study, this module was implemented using an SVM prediction

model using the libsvm software library [2]. In this experiment, the statistical models

were trained on input built as described in Section 3.1.3.3 using the popular statistical

learning software suite R.

3.2.3.2 Fault Injection.

This module is responsible for managing the fault load used to create realistic

failure data. Irrera, et al. [2] use a single tool implementing the G-SWFIT for this

module and pointed out that this module is the most critical piece of the AFP imple-

mentation. G-SWFIT was developed by Duraes, et al. [3] to emulate software failures

for the purposes of software testing. The method is widely implemented for use in

software fault injection both commercially and academically [18, 24–26].

Recently, studies have questioned the representativeness of the failures generated

33

by G-SWFIT [20, 24]. In each case, the workload generated was critical in creat-

ing representative faults. This concern has been addressed in this research and is

discussed in Section 3.2.3.3.

An additional concern regarding fault injection has been that some injected faults

may not elude modern software testing and as a result never actually occur in produc-

tion software [25]. The recommended remedy is to conduct source code analysis to

determine which pieces of code get executed most frequently and avoid fault injection

in those areas. Unfortunately, the target of this research is not an open source project

and as a result, some of the faults and resulting failures may never happen in a pro-

duction environment. Fortunately, the fault injection tool that has been developed

for this research automatically scans each library loaded by the target executable for

fault injection points and then is capable of evenly distributing the faults it does

inject.

Because of the concerns with fault injection, the experiment conducted in this

research tested three additional types of fault load to more exhaustively represent

realistic faults that may be encountered by a target process. This experiment trained

a predictor using failures generated by third-party applications purposefully written

to slowly consume all available resources on the target systems. Specifically, the

third-party application contains a memory leak that slowly allocates all free system

memory until the target application crashes. Next, failures were recorded as the

result of a third-party application consuming all CPU time. Source code for this

application is included in Appendix B. Finally, failure was recorded after corrupting

heap space in memory (versus program memory as done by the G-SWFIT). This

type of fault could be caused by privileged third party applications such as hardware

drivers inadvertently writing to the target process’ allocated memory. Finally, for

completeness, this experiment uses a tool developed for this work that implements

34

the G-SWFIT technique.

This work introduces an x86-64 implementation of G-SWFIT called Windows

Software Fault Injection Tool (W-SWFIT). The source code for W-SWFIT has been

published as open source on Github4 so that others may use it for any of the reasons

cited in the original G-SWFIT paper [3]. For completeness, the source is also included

in Appendix A.

For this research, the original plan was to use the same fault injection tool used

in the original case study by Irrera, et al. [2]. Unfortunately, that tool, and all

prior G-SWFIT implementations were incapable of injecting faults into x86-64 binary

executables. Further, many of the commercial products that were evaluated for this

research were incapable of dealing with modern Address Space Layout Randomization

(ASLR). As a result, W-SWFIT was developed for this research and is capable of

injecting faults into all user and kernel mode applications on modern MS Windows

operating systems.

The key contributions of W-SWFIT are ASLR adaption, and the x86-64 transla-

tions that have been performed. Further, as pointed out by Irrera, et al. [21], prior

implementations of the G-SWFIT were not capable of injecting faults into protected

(kernel mode) processes. Since the focus of this research is on a protected system

process, this capability was critical, and as a result, W-SWFIT made full use of the

WinAPI in a way that made protected process injection possible.

G-SWFIT works by scanning binary libraries already in memory for known pat-

terns (or operators). These operators are then mutated to match compiled errors that

could have been made during development. The errors targeted by G-SWFIT were

discovered by analyzing open source project bug reports and code repositories. The

errors were then classified based on the Orthogonal Defect Classification (ODC) [27]

4https://github.com/paullj1/w-swfit/

35

https://github.com/paullj1/w-swfit/

and are shown in Table 6. The point of this mutation is that failure is ultimately

the result of developer error [1,2], and that fault injection accurately simulates those

errors [3]. Unfortunately, G-SWFIT has only previously been implemented for Java

applications [28, 29], and the IA32 instruction set [3, 25]. Furthermore, the target

applications in this research are strictly x86-64 (also known as x64 or amd64) ap-

plications, and the patterns identified previously are incompatible. Consequently, to

implement the AFP framework completely, a fault injection tool capable of mutating

x86-64 instructions in the same way was required. W-SWFIT implements two of the

operators from the original G-SWFIT shown in Table 6: OMFC and OMLPA. The

translation of these operators was not trivial given the complexity of the x86-64 archi-

tecture. However, a simple example of this translation is shown using the entry/exit

points of a function in Tables 7, and 8. The rest of the translations were done using

the Capstone 5 library and can be seen in source code for W-SWFIT.

In summary, for the purposes of this research, fault injection was performed

four ways: software fault injection with W-SWFIT, under-resourced memory, under-

resourced CPU, and heap space corruption. Apart from W-SWFIT, these new fault

loads are covered in more detail in Section 3.3.

5http://www.capstone-engine.org

Table 6. Fault operators used for fault injection [3].

Type Description ODC Classes

MIFS Missing “If (cond) { statement(s) }” Algorithm
MFC Missing function call Algorithm

MLAC Missing “AND EXPR” in expression used as branch Checking
MLPA Missing small and localized part of the algorithm Algorithm
WVAV Wrong value assigned to a value Assignment
MVI Missing variable initialization Assignment

MVAV Missing variable assignment using a value Assignment
WPFV Wrong variable used in parameter of function call Interface

36

http://www.capstone-engine.org

Table 7. Function entry/exit patterns in IA32 bytecode [3].

Module Entry Point Module Exit Point
Instruction Explanation Instruction Explanation

push ebp stack frame move esp,ebp stack frame
mov ebp, esp setup pop ebp cleanup
sub esp, immed ret

Table 8. Function entry/exit patterns in x86-64 bytecode [3].

Module Entry Point Module Exit Point
Instruction Explanation Instruction Explanation

push rbp stack frame add rsp, immed stack frame
sub rsp, immed pop rbp cleanup
mov rbp, rdx setup ret

3.2.3.3 Workload Management.

The workload management module controls the generation of computational load

by directing the sandbox workload module to create realistic work for the virtually

cloned target to accomplish. Without this module, it could take too long for an

injected fault to evolve into a failure. Consider a missing free statement and the

consequent memory leak. A production target server may have a large amount of

available memory and the leak could be relatively small. To accelerate the possibility

of failure occurring, realistic load must be generated against the sandbox clone of the

production target.

In the original AFP case study, a Windows XP based web-server was the target

and the load generation management was collocated with the actual load genera-

tor - a simple web request generator [2]. In this experiment, the management and

actual load generator roles have been divided and a new tool has been developed:

Distributed PowerShell Load Generator (D-PLG). The rest of this section outlines

D-PLG and how it fulfills the workload and workload management functions of the

AFP framework.

37

Realistic workload is critical in generating realistic failure and consequently train-

ing a useful predictor. Initial searches for a load generator suitable for this research

yielded a tool developed by MS that initiated Remote Desktop Protocol (RDP) con-

nections to aid in sizing a terminal services server6. By executing an RDP session,

the authentication and Domain Name System (DNS) functions of the Domain Con-

troller (DC) would also be loaded. Unfortunately, this tool is no longer maintained

and would not execute on the target machine7. Further searches for tools that would

sufficiently load the DC did not produce any results necessitating the development of

D-PLG.

D-PLG is a collection of remotely executed MS PowerShell scripts managed by

a central script designed to generate realistic traffic that will sufficiently load MS

enterprise services including a web server and DC. Other network traffic generators

typically work by replaying traffic captured on a live network [30]. This would likely

work against an unsecured web server, but unfortunately, due to the cryptographic

nature of authentication on a DC, simply replaying traffic will not load such a service

since the timestamps and challenge responses will no longer be valid. As a result, any

replayed traffic will be dropped and ignored by a live DC. D-PLG solves this prob-

lem by making native authentication requests by use of built-in PowerShell cmdlets

(pronounced command-lets). By doing this, realistic authentication requests are sent

to a DC and are actually processed. Finally, the DNS role can be stressed by sending

the authentication requests using domain names without allowing local caching.

By use of native cmdlets, D-PLG is capable of generating four kinds of traffic

designed to stress the following services: authentication, web, DNS, mail, file sharing,

and MS RDP. D-PLG uses the MS PowerShell environment to generate the traffic in

6http://www.microsoft.com/en-us/download/details.aspx?id=2218
7https://social.technet.microsoft.com/Forums/windowsserver/en-US/

2f8fa5cf-3714-4eb3-a895-c30e2b26862d/debug-assertion-failed-sockcorecpp-line-623

38

http://www.microsoft.com/en-us/download/details.aspx?id=2218
https://social.technet.microsoft.com/Forums/windowsserver/en-US/2f8fa5cf-3714-4eb3-a895-c30e2b26862d/debug-assertion-failed-sockcorecpp-line-623
https://social.technet.microsoft.com/Forums/windowsserver/en-US/2f8fa5cf-3714-4eb3-a895-c30e2b26862d/debug-assertion-failed-sockcorecpp-line-623

an effort to make the traffic as real as possible. After building the tool, an experiment

was constructed and executed on a scale model of a production environment. The

scaled simulation network was built using the recommendations of the MS community

for sizing a DC [31] and tested by running the tool on five client machines against the

DC for five rounds of five minutes. The results of this test are shown in Figures 10,

11, 12.

D-PLG makes use of client machines running a Windows operating system with

PowerShell version 4.0 or newer. The controller asks each machine to generate a

configurable list of requests at evenly spaced intervals for a configurable duration of

time. While this may not be realistic network traffic, it does produce realistic load

against a DC. Since D-PLG depends on the use of client machines, it is recommended

that any load generation be conducted during off-peak hours if spare client sized ma-

chines are not available. It should be noted however, that even with poorly resourced

client machines (shown in Table 4), D-PLG was able to generate fifteen thousand

authentication sessions over a five minute period; approximately 10 authentication

sessions per machine, per second. With modern workstations, the impact on these

client machines is negligible and they can be in use during load generation.

Based on these results, and that a production DC should be at approximately

40% CPU utilization during peak usage [31], D-PLG is capable of sufficiently loading

the DC over a sustained period of time for the purposes of implementing the AFP

framework and was used in this research. Further, D-PLG is capable of scaling to

provide load against higher capacity DCs by using only a few client machines. D-PLG

is available on Github8 for others to use.

In this experiment, D-PLG was used as the central workload manager. Further-

more, the client portion of D-PLG was used installed on five client machines and used

8https://github.com/paullj1/AFP-DC/tree/master/D-PLG

39

Figure 10. How many packets per second were sent or received by the domain controller
across all five rounds of the first test. In each test, we captured approximately 1.8
million packets.

Figure 11. How many packets per second were sent or received by one of the clients
across all five rounds of the first test.

40

Figure 12. Domain controller CPU and memory utilization during the first test.

as the sandbox workload generator as discussed in Section 3.2.4.3.

3.2.3.4 Events Manager.

This module is responsible for receiving and managing log messages and other

events that may be used to train the failure prediction algorithm. Irrera, et al. [2]

use the MS Logman tool from the remote controller for event management in their

original case study. Logman was configured to poll 170 system variables on the target

machine once per second.

Since the focus of this research is on reported errors, and the experimental envi-

ronment in this work was modelled after modern enterprise environments where this

sort of polling could produce too much data, this experiment implemented an rsyslog

server daemon and the target was configured to forward logs to it. Moreover, because

syslog is a standard protocol, it is already in use in many enterprise networks today.

The messages forwarded to the events manager were then processed and added to a

Structured Query Language (SQL) database for training and prediction.

41

3.2.3.5 Sandbox Management.

The purpose of the sandbox management module is to supervise the virtual cloning

of the production system that is made when a new predictor is to be trained. As

Irrera, et al. [2, 17] point out, it is typically inappropriate to inject faults and cause

failures in production systems, so a virtual clone must be created for that purpose.

Furthermore, the virtualization of the target process has little affect on generated

data [17].

For this experiment, the sandbox was managed manually using VM snapshots.

After an initial stable state was configured, snapshots of every component of the ar-

chitecture were taken so that they could be reset after iterations of the experiment.

It is important to note here that because VMWare has documented Application Pro-

gramming Interface (API)s, in future work, this function could be automated.

3.2.4 Sandbox Hypervisor.

The sandbox hypervisor hosts the virtual clone of the production environment

where faults are injected and from which failure data is collected. Cloning the pro-

duction environment ensures that the production system is not be affected and service

are maintained during the training phase. For the purposes of this experiment, the

sandbox was constructed on a single hypervisor implemented as shown in Table 4.

The following sections outline each module within this module.

3.2.4.1 Fault Injection.

This module is responsible for causing the target application to fail so that labelled

failure data can be generated in a short period of time. As described in Section 3.2.3.2,

W-SWFIT has been developed to serve this purpose and implements the G-SWFIT

technique developed by Duraes, et al. [3] for fault injection. The execution is con-

42

trolled by the Windows Server VM on the ‘Controller’ hypervisor through PowerShell

remote execution to reduce the interaction and potential to introduce bias into the

training data. The tool allowed us to inject a comprehensive list of faults into the

AD services processes and binary libraries which are mostly contained within the

‘lsass.exe’ process. Since many of the critical functions performed by the AD services

processes are performed in one library called ‘ntdsa.dll’9, it was the focus of fault

injection.

This function was extended by this research to include failure as a result of third-

party memory and CPU leaks, and memory corruption. Section 3.3 covers these

extensions in more depth.

3.2.4.2 Monitoring.

The purpose of this module is to capture some evidence or indication of pending

failure at the target host level so that it may be used to train a statistical prediction

model. Since Irrera, et al. [2] use the Logman remotely, no additional software was

needed on the host. In this experiment, syslog was used and while it is a recognized

standard, syslog messages are not produced natively in Windows. Fortunately, several

forwarding agents are available to translate and forward native Windows log messages

to a syslog server. For this experiment, the Solar Winds syslog forwarding tool was

used because of its popularity in the security community and existing presence on

many enterprise networks. The tool is a lightweight application that simply forwards

Windows events to a syslog server.

3.2.4.3 Sandbox Workload.

The purpose of this module is to create realistic work for the target application

to do before faults are injected. If the workload is not realistic, then the failures that

9https://technet.microsoft.com/en-us/library/cc780455(v=ws.10).aspx

43

https://technet.microsoft.com/en-us/library/cc780455(v=ws.10).aspx

occur after fault injection will not be representative of real failures and any data or

indicators collected cannot be used to train an effective prediction algorithm [2,20,24].

Irrera, et al. [2] used a web traffic generator called TPC-W installed on a single

machine in their original study because their target was a web server. This would be

the ideal tool for the validation test on the Apache web server in this experiment but

unfortunately, this tool has been deprecated and no substitute has been written 10.

As a result, D-PLG was used as the work load generator for both the DC and web

requests.

D-PLG is a distributed tool and requires the use of client machines. This module

is represented by those client machines. In this experiment, the client portion of D-

PLG was installed on five client machines managed by the central workload manager

as discussed in Section 3.2.3.3.

3.2.5 Target Hypervisor.

The target hypervisor was constructed as a clone of the sandbox hypervisor shown

in Table 4. The following section outlines the monitoring tool installed on both the

DC and web server on this hypervisor.

3.2.5.1 Monitoring.

The monitoring module is exactly the same as the sandbox monitoring module

and for this experiment, the Solar Winds syslog forwarding tool was used. The only

modification worth noting here is that to ensure that the messages sent were uniquely

identified by the controller, the hostname of the target machine must be different from

the hostname of the sandbox target machine.

10http://www.tpc.org/tpcw/

44

http://www.tpc.org/tpcw/

3.3 Extensions to the AFP

This section outlines the extensions to the AFP framework explored by this re-

search. Given that fault injection isn’t always considered representative [20], the next

three sub-sections outline three additional fault loads explored. Next, an outline of

the changes in how data was collected from the target is presented. Finally, this

chapter concludes with a brief summary of these extensions.

3.3.1 Under-Resourced CPU.

A CPU may become under-resourced in a few ways. The organization implement-

ing the target service may not accurately anticipate the amount of load the service

may experience. Alternatively, a third-party application installed on the same phys-

ical machine may inadvertently consume all CPU time. The result in both of these

situations is the target process gets starved of CPU time.

This condition was simulated in two ways to accurately capture both scenarios

outlined above. First, by downsizing the number of virtual CPUs available to the

target VM. Second, by introducing a third-party application that ran at 100% CPU.

The source code for this application is shown in Appendix B.

3.3.2 Under-Resourced Memory.

Available memory can be limited in a few ways. As with the under-resourced

CPU, the implementing organization may underestimate the amount of memory that

will be needed by a server to handle the required demand. Additionally, a third-party

application could contain a memory leak. In both cases, the target application may

not have enough memory to accomplish the work it has been assigned.

To test this fault load, this experiment created both conditions outlined above.

First, as was done for the CPU, the amount of memory available to the target VM

45

was reduced. Second, a third-party application with an intentional memory leak

was run on the target system. The source code for this application is also shown in

Appendix B.

3.3.3 Heap Space Corruption.

Finally, heap-space corruption can happen in a production environment in a few

ways. First, in the Windows operating system, device drivers share critical kernel

mode libraries and have elevated permissions [32]. If a hardware device driver devel-

oper inadvertently writes to an area of memory not allocated for his software, say by

forgetting to dereference a pointer, Windows may not warn him. Consequently, he

may corrupt the memory of another process.

In this experiment, the focus of this fault load was on the user database. First,

users that had been cached by the DC process were corrupted. Next, to simulate a

disk failure, the same user was corrupted on disk. To do this, the W-SWFIT code

was modified to be able to search and write anywhere in a processes memory. This

code is shown in Appendix A.

3.3.4 Reported Errors.

Finally, this research focusses on reported errors instead of system information

using the Logman tool in the original study [2]. As pointed out by Salfner, et al. [1],

a predictor only given system information is not typically able to determine the

difference between a system that is going to fail and one that is perhaps under higher

than average load. It may be able to pick up on undetected errors, but there is

little to distinguish those from every day use. Consider the DC and a memory leak

situation. According to Russinovich, et al. [32], the MS DC will use as much memory

as is available to cache user credentials. This consumption of all available memory

46

may appear very similar to a memory leak if system information is all that is being

recorded.

3.3.5 Summary.

In summary, by adding these additional faults and considering reported errors

when generating failure data used to train a prediction algorithm, the resulting algo-

rithm will be able to predict a wider range of realistic failures.

47

IV. Experimental Results and Analysis

To test the extended Adaptive Failure Prediction (AFP) framework laid out in

Chapter III, failure data was generated before a series of major software updates

using software fault injection, under-resourced Central Processing Unit (CPU), under-

resourced memory, and heap space corruption, on two Windows Server 2008 machines:

the Domain Controller (DC), and the Apache web server. The failure data was used to

train two statistical prediction models: an Support Vector Machine (SVM) classifier,

and a boosted decision tree. Following the software updates, more failure data was

generated and the old statistical models were used to predict failure in the new data.

Finally, new statistical models were trained using the new data. To compare each

fault load both before and after the software updates, performance was measured

using the Area Under the Curve (AUC) and F-Measure.

In this chapter, common reporting techniques and measures of performance are

reviewed. These measures and reporting techniques are then used to report the results

of the experiments conducted. The chapter concludes with a short summary.

4.1 Performance Measures

This section reviews the performance measures used in this chapter to demonstrate

the efficacy and quality of the statistical models trained in this research. These

measures are commonly used in the field of machine learning to compare and assess

predictors and are taken from a survey of Online Failure Prediction (OFP) methods

written by Salfner et al. [1].

This research utilizes a technique called cross-validation in which a set of labelled

data are broken into three parts as follows:

1. Training Set: A data set that allows a prediction model to establish and optimize

48

its parameters

2. Validation Set: The parameters selected in the training phase are then validated

against a separate data set

3. Test Set: The predictor is finally run against a final previously unevaluated

data set to assess generalizability

During the test phase, true positives (negatives) versus false positives (negatives)

are determined in order to compute the performance measures in this section. The

following terms and associated abbreviations are used: True Positive (TP) is when

failure has been predicted and then actually occurs; False Positive (FP) is when failure

has been predicted and then does not occur; True Negative (TN) is when a state has

been accurately classified as non-failure prone; False Negative (FN) is when a state

has been classified as non-failure prone and a failure occurs.

4.1.1 Precision and Recall.

Precision and recall are the most popular performance measures used when for

comparing OFP approaches. The two are related and often times improving precision

results in reduced recall. Precision is the number of correctly identified failures over

the number of all predicted failures. In other words, it reports how many were correct

out of all of the predictions of a failure-prone state that were made. In general, higher

precision indicates a better predictor. Precision is expressed as:

Precision =
TP

TP + FP
∈ [0, 1]

Recall is the ratio of correctly predicted failures to the number of true failures.

In other words, it reports, out of the actual failures that occurred, how many the

49

predictor classified as failure-prone. In conjunction with a higher precision, higher

recall is indicative of a better predictor. Recall is expressed as:

Recall =
TP

TP + FN
∈ [0, 1]

F-Measure is the harmonic mean of precision and recall and represents a trade-

off between the two [33]. A higher F-Measure reflects a higher quality predictor.

F-Measure is expressed as:

F -Measure =
2 · Precision ·Recall
Precision+Recall

∈ [0, 1]

4.1.2 False Positive Rate (FPR) and Specificity.

Precision and recall do not account for true negatives (correctly predicted non-

failure-prone situations) which can bias an assessment of a predictor. The following

performance measures take true negatives into account to help evaluators more accu-

rately assess and compare predictors.

FPR is the number of incorrectly predicted failures over the total number of

predicted non-failure-prone states. A smaller FPR reflects a higher quality predictor.

The FPR is expressed as:

FPR =
FP

FP + TN
∈ [0, 1]

Specificity the number of times a predictor correctly classified a state as non-

failure-prone over all non-failure-prone predictions made. In general, specificity alone

is not very useful since failure is rare. Specificity is expressed as:

Specificity =
TN

FP + TN
= 1− FPR

50

4.1.3 Negative Predictive Value (NPV) and Accuracy.

In some cases, it may be desirable to show that a prediction approach can correctly

classify non-failure-prone situations. The following performance measures usually can

not stand alone due to the nature of failures being rare events. In other words, a highly

“accurate” predictor could classify a state 100% of the time as non-failure-prone and

still fail to predict every single true failure. This predictor would be highly accurate,

but ultimately ineffective.

NPV is the number of times a predictor correctly classifies a state as non-failure-

prone to the total number all non-failure-prone states during which a prediction was

made. Higher quality predictors have high NPVs. The NPV is expressed as:

NPV =
TN

TN + FN

Accuracy is the ratio of all correct predictions to the number of predictions made.

Accuracy is expressed as:

Accuracy =
TP + TN

TP + FP + FN + TN

4.1.4 Precision/Recall Curve.

Much like with other predictors, many OFP approaches implement variable thresh-

olds to sacrifice precision for recall or vice versa. That trade-off is typically visualized

using a precision/recall curve as shown in Figure 13.

Another popular visualization is the Receiver Operating Characteristic (ROC)

curve. By plotting True Positive Rate (TPR) over FPR one is able to see the pre-

dictors ability to accurately classify a failure. A sample ROC curve is shown in

Figure 14.

The ROC curve relationship can be further illustrated by calculating the AUC.

51

Figure 13. Sample precision/recall curves [1]. Curve A represents a poorly performing
predictor, curve B an average predictor, and curve C an exceptional predictor.

Figure 14. ROC plots of perfect, average, and random predictors [1].

52

Predictors are commonly compared using the AUC which is calculated as follows:

AUC =

∫ 1

0

TPR(FPR) dFPR ∈ [0, 1]

.

A purely random predictor will result in an AUC of 0.5 and a perfect predictor

a value of 1. The AUC can be thought of as the probability that a predictor will be

able to accurately distinguish between a failure-prone state and a non-failure-prone

state, over the entire operating range of the predictor.

The results of the experiments conducted in this research report all of the above

described measures of performance in the next section.

4.2 Results

The experiments designed in Chapter III were executed in a virtual environment to

produce failure data. The failure data generated was used to train statistical learning

models using the open source statistical learning software suite: R. The parameters

used to train each model were selected using cross-validation on a subset of the failures

generated. Finally, each model was evaluated using a held-out test set. The results

of this evaluation for each fault load are reported here.

The rest of this chapter is organized first by the target system, then by the different

fault loads that were used to generate failure data on the corresponding target. In

each sub-section, the results after training a machine learning model on failure data

generated using that type of fault are detailed. Finally, this chapter is concluded with

a summary of these results.

53

4.2.1 Microsoft (MS) DC.

4.2.1.1 Fault Injection.

This fault load was effective at creating a failure, but unfortunately, each failure

observed occurred immediately after introducing the fault. Because there was no

delay between injection and failure, there did not exist any indicators of failure. Con-

sequently, machine learning cannot help in this situation. According to Russinovich,

et al. [32] the lsass.exe process, as well as other critical system processes, are at the

top of the structured exception handling stack and do not handle exceptions. When

faced with exceptions, the processes exit and the system reboots.

4.2.1.2 Under-Resourced CPU.

This fault load never resulted in failure. To test this fault load, the virtual domain

controllers resources were reduced. The CPU went from a dual-core to a single virtual

CPU, and the memory was reduced from 2 Gb to 512 Mb. This reduction was

well beneath the recommended capacity [31] for a domain controller. The workload

generator was then allowed to run against this configuration for seven days. For the

duration of the test, the CPU load was 100%, and physical memory was 90% utilized

on average. While the service did experience reduced response time, failure did not

occur.

Another test was conducted to test this fault load by allowing a third-party appli-

cation to slowly consume all CPU time. Much like the previous test, this test never

resulted in failure. Consequently, the learning was not attempted for fault load.

4.2.1.3 Under-Resourced Memory.

The under-resourced memory fault load was the first that created observable in-

dicators of failure with any lead time. This fault load produced the best performing

54

predictors and the largest sliding time window for prediction of sixty seconds. Accord-

ing to James, et al. [34], there can be advantages and trade-offs between parametric

and non-parametric models. For this reason, this experiment explores the use of two

machine learning models: the weighted SVM, and boosted decision trees using the

multinomial distribution.

4.2.1.4 Weighted SVM.

For this prediction method, the e1071 package was used to train an SVM. The

tune function was used to run a 5-fold cross-validation a total of 48 times to select the

optimal parameters (gamma, cost, and degree polynomial) using: four kernels, four

sliding data/prediction windows, and three training/test data splits. The classifica-

tion weights were set to roughly equal the proportion of failure prone to non-failure

prone data windows 0.8 for failure, and 0.2 for non-failure.

The optimal model was selected with the Radial kernel with γ = 0.1, cost = 1,

time window = 60 seconds, and the split of data = 4 of the observed failures used for

training.

Initial test performance was poor so the test data was then evaluated in sequential

order using a threshold. After two sequential windows were predicted as failure-prone,

the next w windows were also predicted as failure-prone, where w = window size −

threshold size. For threshold = 2, the resulting confusion matrix for the optimal F-

Measure, the ROC curve, and the precision/recall curve are shown in Table 9, and

Figure 15 respectively.

Table 9. Confusion matrix on test data created before software updates on threshold
with highest F-Measure (0.8739) using SVM.

Actual
Fail No-Fail

Predicted
Fail 52 6
No-Fail 9 607

55

(a) Precision/Recall Curve. (b) ROC Curve (AUC = 0.8664).

Figure 15. Test data performance of the SVM prediction method on failure data
obtained by consuming all available memory until target application fails.

After the software update, the same model was used on a new set of generated

failures. The old model did not accurately classify a single failure prone time window.

A new model was then trained with the newly generated failure data. Unfortunately,

after this software update, with all other things held constant, the weighted SVM

model was unable to achieve the same level of performance as before resulting in a

maximum F-Measure of 0.4380 indicating the predicted underlying system changes.

4.2.1.5 Boosted Decision Trees.

For this prediction model, the gbm package was used to train a boosted decision

tree. Cross-validation was used to select λ = 0.03, the interaction depth of = 4,

and the number of trees = 1000. The multinomial distribution was used to perform

classification. This was chosen instead of Bernoulli given that the two distributions are

the same except multinomial is capable of classification with more than two classes.

While this flexibility is not required for this experiment, it may be useful in the future

to predict additional system states like ‘degraded’, or ‘idle’.

The precision/recall, and ROC curves on a sixty second data/prediction window

are shown in Figure 16. The confusion matrix at the optimal threshold for F-measure

56

is shown in Table 10.

After the software update, the same prediction model was used new set of gen-

erated failures. A list of updates that were applied are shown in Appendix C. The

precision/recall and ROC curves on data generated after the software update using

the old model are shown in Figure 17. The confusion matrix at the optimal threshold

for F-measure is shown in Table 10.

Finally, a new predictor was trained using more generated failures as was done

before the update. The precision/recall, and ROC curves on the held-out test data are

shown in Figure 18 and the confusion matrix at the optimal threshold for F-measure

is shown in Table 12.

4.2.1.6 Heap Space Corruption.

Just as with fault injection, this fault load was able to produce failures, but these

failures were not preceded by any indicators. To increase realism in this fault load, the

focus of the corruption was on the user database. The user database is incrementally

cached as authentication requests are received [32]. To test this fault load, the AFP

execution phase was run as normal. After the workload generator reached a steady

state, a single user in the database on disk was corrupted followed immediately by the

same user being corrupted in process memory. If the disk was not corrupted along with

memory, the process would have treated the corruption as a cache miss and re-cached

the user from disk. When both were corrupted simultaneously, the process crashed

and forced system reboot the very next time that user requested authentication.

Table 10. Confusion matrix on test data created before software updates on threshold
with highest F-Measure (0.9917) using boosting.

Actual
Fail No-Fail

Predicted
Fail 60 0
No-Fail 1 412

57

(a) Precision/Recall Curve. (b) ROC Curve (AUC = 0.9984).

Figure 16. Test data performance of the boosting prediction method on failure data
obtained by consuming all available memory until target application fails.

(a) Precision/Recall Curve. (b) ROC Curve (AUC = 0.4854).

Figure 17. Performance of the boosting prediction method trained on failure data
created before the software update obtained by consuming all available memory until
target application fails.

Table 11. Post-update failure data confusion matrix on threshold with highest F-
Measure (0.4691) using model trained on failure data generated before software update.

Actual
Fail No-Fail

Predicted
Fail 19 1
No-Fail 42 222

Table 12. Post-update failure data confusion matrix on threshold with highest F-
Measure (0.9355) using model trained on failure data generated after software update.

Actual
Fail No-Fail

Predicted
Fail 58 5
No-Fail 3 218

58

(a) Precision/Recall Curve. (b) ROC Curve (AUC = 0.9801).

Figure 18. Performance of the boosting prediction method trained on failure data
created after the software update obtained by consuming all available memory until
target application fails.

Unfortunately, exactly as with fault injection, there were no preceding indicators of

failure and thus training a prediction model was unsuccessful.

4.2.2 Web Server.

To validate the approach and implementation of the AFP framework in this ex-

periment, it was also tested against an Apache web server. The underlying system

change in this experiment was simulated by upgrading Apache from version 2.2.31

x64 to version 2.4.20 x64. Results for the web server were almost identical to those

for the DC for each fault load. The only predictable failure was in the case of the

memory leak. The following sub-sections outline specific results after testing each

fault load.

4.2.2.1 Fault Injection.

In the case of the web server, each library loaded by the Apache server process

httpd.exe was targeted for fault injection. In every case, faults were injected until

failure occurred. Much like the DC, for each failure observed, no preceding indications

of failure were visible in the log messages.

59

4.2.2.2 Under-Resourced CPU.

Much like with the DC, both methods of creating this situation resulted in no fail-

ure. The client machines did experience delayed responses, but the server continued

to run.

4.2.2.3 Under-Resourced Memory.

As with the DC, this was the only fault load that could be used to predict failure

given only reported errors. However, machine learning was not necessary given the

low number of log messages produced. Since Apache stores access requests in a

separate file, they were essentially pre-filtered. Apache, also by default, stores error

messages in an external log. There were no messages reported in this file in any of

the failure runs conducted. The only indicators produced were reported by Windows

and recorded by the rsyslog server. An average number of 15 messages were reported

during each round of the execution phase and the indicators of failure were easy to

see. In this case, simple rules could be used to predict failure in this process so a

learning algorithm was not trained.

After the Apache software update was applied, the indicators of failure did not

change and there were no additional messages reported in the separate error log. For

this reason, the same updates were applied to the operating system as was done for

the DC target. After these updates, the indicators changed slightly but were still

very few and could be used to write a few simple rules.

These results do not diminish the utility of the AFP framework. Without the

framework, the indicators would still be unknown until after a failure. Moreover,

there would be no way to tell how long a set of rules would be effective after being

written.

60

4.2.2.4 Heap Space Corruption.

This fault load was tested against the Apache server by targeting the actual web

page stored in memory. Much like was done by the DC with users, this was treated

as a cache miss and the content was retrieved from disk. Again, to simulate a disk

failure, this file was made inaccessible. The result was an immediate failure to serve

the content. As with the DC, there were no preceding indications of failure.

4.2.3 Summary.

In summary, the only fault load usable for training a statistical model to predict

failure based only on reported errors was the memory leak. As expected, the software

update did drastically reduce the effectiveness of a model trained with failure data

before the software update. The boosted decision tree was able to be re-trained after

the software update, but the SVM was not. This suggests that both models should be

used to ensure the AFP framework is able to adapt to the underlying system changes

and maintain at least one useful predictor.

61

V. Conclusion and Future Work

This chapter outlines several lines of future work based on the outcomes of this

research. The future work is then followed by the conclusions drawn from this work

and a discussion of their impact.

5.1 Future Work

Several lines of research following this work are presented in this section. First

and foremost, in order to put this technique into use on production systems, the proof

of concept Windows Software Fault Injection Tool (W-SWFIT) application must be

completed. Furthermore, while automation was a consideration while conducting this

research, it was not implemented. To be effective in a production environment, the

entire Adaptive Failure Prediction (AFP) process must be automated.

One especially relevant and interesting line of effort that should follow this work

is to better identify when the underlying system has changed enough to require re-

training. While the process is automated, it will unlikely be necessary after every

software update. In order to avoid unnecessary use of resources, this process could

be explored.

As was demonstrated with the boosted decision trees, other statistical classifiers

could be explored. The AFP framework is not limited to a single predictor [2]. A series

of prediction models can be used to vote on the state of a system, the output being the

majority. In addition to exploring other statistical learning models, additional states

(or classes) could be explored. For example, instead of a failure state, a classification

model could be used to predict when a system would be idle to know when best to

install software updates. Further, a classification model may be able to automate

the classification and prediction of when a target was under a malicious attack in a

62

method similar to the AFP framework.

An additional area of exploration should be to better identify how fault injection

actually affects the underlying system. This research has shown that in some cases, it

can be extremely difficult to identify areas that will create realistic failure conditions

with any preceding indicators. Even when constrained, a single library can have

hundreds of injection points. Furthermore, in some cases, even when all injection

points are tested, none may lead to a realistic failure. For this reason, the additional

fault loads play an integral role.

The use of additional system statistics in conjunction with reported errors could

be explored but as Salfner, et al. [1] point out, it is difficult to distinguish between

normal operations or increased work load using this type of information. In this work,

the only possible outcomes of fault injection were fail immediately, or no fail. For

this reasons, the use of this data was not explored.

Finally, the integration of actual failure data with the AFP framework should be

explored. Bootstrapping could be used to better integrate actual failure data into the

training phase if it is observed.

5.2 Conclusion

This research explored the use of the AFP framework with additional fault loads

to predict failure using reported errors in the Microsoft (MS) Domain Controller

(DC). It has been shown that it is possible to predict failure in modern MS enterprise

authentication architecture given a representative fault load. Unfortunately, at the

time of writing, two out of the three fault loads introduced in this research did not

create failure conditions that could be predicted due to the fact that there were no

preceding indicators of failure. This was a stated limitation of the research. However,

the new fault loads are not useless. As was demonstrated with the Support Vector

63

Machine (SVM) predictor, the underlying system changes can introduce or eliminate

an application’s vulnerability to certain types of faults. For this reason, if the AFP

framework is implemented on MS DCs, all fault loads should be used in the execution

and training phases.

Perhaps most interestingly, fault injection, as was used in the original AFP frame-

work implementation, had two outcomes: no failure occurred or failure occurred im-

mediately. In the controlled virtual environment, failure was predictable using polled

system health information, but perhaps the indicators used to predict the failure were

not actual errors but the fault injection tool itself injecting faults. Since during the

golden runs, the fault injection tool never wrote to another process’ memory, it is

possible that a predictor trained using system health information would associate

these operations with failure. Furthermore, even only using the Operator for Missing

Function Call (OMFC), there were still thousands of injection points in the Windows

Server 2008 operating system. Identifying the handful that may activate in a realistic

way without crashing the target service immediately is not trivial. One potential

solution to this problem is to implement some sort of taint engine as is being used

in software testing. Being able to more accurately identify where in the course of

a programs execution a register will be accessed could lead to more accurate fault

injection. Clearly more work must be done to validate using fault injection alone in

the AFP framework.

In addition to the new fault loads introduced in this work, a load generator has

also been presented: Distributed PowerShell Load Generator (D-PLG), capable of

sufficiently simulating peak usage of a MS enterprise DC. Additional uses for D-

PLG outside of use in the AFP framework include capacity planning/sizing, network

security testing and auditing, and software testing. This research also introduced

W-SWFIT which can be used to perform fault injection for a variety of additional

64

uses like software testing and auditing.

As mentioned, a limitation of this technique is that it is not able to predict mali-

cious acts or Act of God events. Furthermore, the data generated are still simulated

data and as such, may not completely capture all possible failure events. The AFP

framework as presented here will however provide more reliable predictions than are

currently available today.

In conclusion, the modified AFP framework as presented here can be used to effec-

tively predict failures that might occur in a production environment and is capable of

adapting to underlying system changes using only reported errors. For these reasons,

it is recommended that if the AFP framework is to be implemented as laid out in

this research, all fault loads should be integrated to maximize the frameworks ability

to adapt to system changes. To improve the efficacy of a predictor trained using this

generated data, real failure data and additional predictors can easily be integrated if

available. Finally, real failure data is difficult to obtain given how rare failure is in

modern systems. Unfortunately, even after it is obtained, it can rapidly become dep-

recated by underlying system changes. Using the AFP with the fault loads introduced

in this work to generate simulated failure data is the next best thing to having real

data and provides more useful predictions than are available with no failure data.

65

Appendix A. Windows Software Fault Injection Tool
(W-SWFIT) Source Code

// FaultInjection.cpp : Defines the entry point for the console application.

//

#include "stdafx.h"

#include "globals.h"

#include "Operators.h"

#include "Operator.h"

#include "Library.h"

using namespace std;

bool SendSyslog();

char* GetAddressOfData(HANDLE process, const char *data, size_t len);

int _tmain(int argc, _TCHAR* argv[]) {

// Declarations

DWORD aProcesses[1024], cbNeeded, cProcesses;

TCHAR szProcessName[MAX_PATH] = TEXT("<unknown>");

unsigned int i;

// Get All pids

if (!EnumProcesses(aProcesses, sizeof(aProcesses), &cbNeeded)){

cerr << "Failed to get all PIDs: " << GetLastError() << endl;

return -1;

}

// Get screen width

CONSOLE_SCREEN_BUFFER_INFO csbi;

GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbi);

int dwidth = csbi.srWindow.Right - csbi.srWindow.Left;

cout << "Running Processes" << endl;

printf("%-6s %-*s\n", "PID", dwidth - 7, "Process");

cout << string(3, ’-’) << " " << string(dwidth - 7, ’-’) << endl;

cProcesses = cbNeeded / sizeof(DWORD);

for (i = 0; i < cProcesses; i++) {

if (aProcesses[i] != 0) {

HANDLE hProc = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE,

aProcesses[i]);

if (hProc != NULL) {

HMODULE hMod;

DWORD cbNeededMod;

if (EnumProcessModules(hProc, &hMod, sizeof(hMod), &cbNeededMod)) {

GetModuleBaseName(hProc, hMod, szProcessName, sizeof(szProcessName

) / sizeof(TCHAR));

}

_tprintf(TEXT("%6u %-*s\n"), aProcesses[i], dwidth - 7, szProcessName);

CloseHandle(hProc);

}

}

}

// Which process?

string s_pid = "";

cout << endl << "Into which process would you like to inject faults? [PID]: ";

getline(cin, s_pid);

int pid = stoi(s_pid);

66

HANDLE hTarget = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid);

if (!hTarget) {

cerr << "Failed to open process (check your privilege): " << GetLastError() << endl;

return -1;

}

// Fault Injection or Memory Corruptions?

string s_fivsmc = "";

cout << endl << "Would you like to inject Faults, or corrupt Memory? [f|m]: ";

getline(cin, s_fivsmc);

if (s_fivsmc.find("m") != string::npos){

string s_query = "";

cout << endl << "What are you looking for in process memory?: ";

getline(cin, s_query);

char* ret = GetAddressOfData(hTarget, s_query.c_str(), s_query.length());

if (ret) {

cout << "Found at addr: " << (void*)ret << endl;

size_t bytesRead;

size_t sizeToRead = s_query.size();

char *buf = (char *)malloc(sizeToRead + 1);

ReadProcessMemory(hTarget, ret, buf, sizeToRead, &bytesRead);

buf[sizeToRead] = ’\0’;

cout << "Num bytes read: " << bytesRead << endl;

cout << "Contents: " << string(buf) << endl;

// Overwrite it

byte *null_array = (byte *)malloc(bytesRead);

fill_n(null_array, bytesRead, 0x00);

SIZE_T mem_bytes_written = 0;

if (WriteProcessMemory(hTarget, (LPVOID)ret, null_array, bytesRead, &

mem_bytes_written) != 0) {

cout << "Bytes written: " << mem_bytes_written << endl;

cout << "Successful corruption." << endl;

return 0;

} else {

cerr << "Failed to corrupt memory: " << GetLastError() << endl;

return -1;

}

} else {

cout << "Not found" << endl;

}

return 0;

}

// Enumerate modules within process

HMODULE hmods[1024];

cout << "DLLs currently loaded in target process:" << endl;

printf("%-4s %-*s\n", "ID", dwidth-5, "Module Name:");

cout << string(4, ’-’) << " " << string(dwidth - 5, ’-’) << endl;

if (EnumProcessModules(hTarget, hmods, sizeof(hmods), &cbNeeded)) {

for (i = 0; i < (cbNeeded / sizeof(HMODULE)); i++) {

TCHAR szModName[MAX_PATH];

if (GetModuleFileNameEx(hTarget, hmods[i], szModName, sizeof(szModName) / sizeof

(TCHAR))) {

_tprintf(TEXT("%4d %-*s\n"), i, dwidth-5, szModName);

} else {

cerr << "Failed to Print enumerated list of modules: " << GetLastError()

<< endl;

}

}

} else {

cerr << "Failed to enum the modules: " << GetLastError() << endl;

67

}

// Which Module?

string s_mod_id = "";

cout << "Into which module would you like to inject faults? [ID]: ";

getline(cin, s_mod_id);

int mod_id = stoi(s_mod_id);

MODULEINFO lModInfo = { 0 };

cout << "Dll Information:" << endl;

if (GetModuleInformation(hTarget, hmods[mod_id], &lModInfo, sizeof(lModInfo))){

cout << "\t Base Addr: " << lModInfo.lpBaseOfDll << endl;

cout << "\t Entry Point: " << lModInfo.EntryPoint << endl;

cout << "\t Size of image: " << lModInfo.SizeOfImage << endl << endl;

} else {

cerr << "Failed to get module information: " << GetLastError() << endl;

return -1;

}

// Get module name

TCHAR szModName[MAX_PATH] = TEXT("<unknown>");

GetModuleFileNameEx(hTarget, hmods[mod_id], szModName, sizeof(szModName) / sizeof(TCHAR));

// Build library object

Library *library = new Library(hTarget, (DWORD64)lModInfo.lpBaseOfDll,

lModInfo.SizeOfImage, string((char *)

&szModName));

// Save library for future static analysis

library->write_library_to_disk("C:\\memdump.dll");

library->inject();

// Send syslog message

SendSyslog();

return 0;

}

bool SendSyslog() {

WSADATA wsaData;

int iResult = WSAStartup(MAKEWORD(2, 2), &wsaData);

if (iResult != NO_ERROR) {

cerr << "Couldn’t send syslog message" << endl;

return false;

}

SOCKET ConnectSocket;

ConnectSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

if (ConnectSocket == INVALID_SOCKET) {

cerr << "Couldn’t send syslog message" << endl;

WSACleanup();

return false;

}

sockaddr_in clientService;

clientService.sin_family = AF_INET;

clientService.sin_addr.s_addr = inet_addr("192.168.224.7");

clientService.sin_port = htons(514);

iResult = connect(ConnectSocket, (SOCKADDR *)&clientService, sizeof(clientService));

if (iResult == SOCKET_ERROR) {

cerr << "Couldn’t send syslog message" << endl;

closesocket(ConnectSocket);

68

WSACleanup();

return false;

}

char *sendbuf = "FAULT_INJECTED_SUCCESSFULLY";

iResult = send(ConnectSocket, sendbuf, (int)strlen(sendbuf), 0);

if (iResult == SOCKET_ERROR) {

cerr << "Couldn’t send syslog message" << endl;

closesocket(ConnectSocket);

WSACleanup();

return false;

}

cout << "Successfully sent syslog message" << endl;

closesocket(ConnectSocket);

WSACleanup();

return true;

}

char* GetAddressOfData(HANDLE process, const char *data, size_t len) {

SYSTEM_INFO si;

GetSystemInfo(&si);

MEMORY_BASIC_INFORMATION info;

vector<char> chunk;

char* p = 0;

while(p < si.lpMaximumApplicationAddress) {

if(VirtualQueryEx(process, p, &info, sizeof(info)) == sizeof(info)) {

p = (char*)info.BaseAddress;

chunk.resize(info.RegionSize);

SIZE_T bytesRead;

if(ReadProcessMemory(process, p, &chunk[0], info.RegionSize, &bytesRead))

for(size_t i = 0; i < (bytesRead - len); ++i)

if(memcmp(data, &chunk[i], len) == 0)

return (char*)p + i;

p += info.RegionSize;

}

}

return 0;

}

// Class definition for the Funciton object

#ifndef FUNCTION_H

#define FUNCTION_H

#include "stdafx.h"

#include "globals.h"

#include "Operator.h"

#include <map>

using namespace std;

class Function {

public:

Function(HANDLE _target, DWORD64 _start, DWORD64 _end, byte *_code);

~Function();

69

bool inject();

private:

map < DWORD64, Operator *> local_injection_points; // Address -> NOP Sequence

DWORD64 start_addr = 0;

DWORD64 end_addr = 0;

byte *buf;

DWORD64 size = 0;

HANDLE hTarget; // Managed by Library (don’t close it here)

// Capstone Buffer

cs_insn *code_buf;

size_t cs_count = 0;

csh cs_handle;

bool build_injection_points();

bool perform_injection(DWORD64 addr);

bool inject(Operator *op, DWORD64 addr);

// Build map of injectable points

bool find_operators_mfc();

bool find_operators_ompla();

};

#endif

// Class definition for the Library object (contains single DLL)

#ifndef LIBRARY_H

#define LIBRARY_H

#include "stdafx.h"

#include "globals.h"

#include "Operators.h"

#include "Operator.h"

#include "Function.h"

#include <vector>

#include <map>

using namespace std;

class Library {

public:

Library(HANDLE _target, DWORD64 _start, DWORD _size, string _path);

~Library();

bool write_library_to_disk(string path);

bool inject();

private:

string name; // Name of library

vector < Function * > functions; // Vector (list) of functions in library

map < Operator *, Operator * > function_patterns; // Vector of function patterns

byte *buf; // Buffer for memory contents

DWORD64 start_addr = 0;

DWORD image_size = 0;

HANDLE hTarget;

bool read_memory_into_bufer();

bool build_operator_map();

bool find_functions();

70

bool find_pattern(Operator *op, DWORD64 start, DWORD64 stop, DWORD64 *location);

};

#endif

// Class definition for the Operator object

// This object contains a byte array and a size

#ifndef OPERATOR_H

#define OPERATOR_H

#include "stdafx.h"

#include "globals.h"

using namespace std;

class Operator {

public:

Operator(const byte *pattern, DWORD64 size);

~Operator();

DWORD64 size() { return _size; }

const byte *pattern() { return (const byte *)_pattern; }

private:

byte *_pattern;

DWORD64 _size;

};

#endif

// Operators.h : Defines the operators to search and replace

//

#ifndef OPERATORS_H

#define OPERATORS_H

#include "stdafx.h"

#include "globals.h"

const byte start_pattern_1[] = { 0x55, 0x48, 0x83, 0xec, 0x20, 0x48, 0x8b, 0xea };

const byte end_pattern_1[] = { 0x48, 0x83, 0xc4, 0x20, 0x5d, 0xc3 };

/* Begin Function:

PUSH RBP

SUB RSP, 0x20

MOV RBP, RDX

End Function:

ADD RSP, 0x20

POP RBP

RET

*/

const byte start_pattern_2[] = { 0xff, 0xf3, 0x48, 0x83, 0xec, 0x20, 0x48, 0x8b, 0xd9 };

const byte end_pattern_2[] = { 0x48, 0x83, 0xc4, 0x20, 0x5b, 0xc3 };

/* Begin Function:

PUSH RBX

SUB RSP, 0x20

MOV RBX, RCX

End Function:

ADD RSP, 0x20

POP RBX

RET

*/

71

const byte start_pattern_3[] = { 0xff, 0xf3, 0x48, 0x83, 0xec, 0x20, 0x8b, 0xd9 };

const byte end_pattern_3[] = { 0x48, 0x83, 0xc4, 0x20, 0x5b, 0xc3 };

/* Begin Function:

PUSH RBX

SUB RSP, 0x20

MOV EBX, ECX

End Function:

ADD RSP, 0x20

POP RBX

RET

*/

const byte start_pattern_4[] = { 0x57, 0x48, 0x83, 0xec, 0x20, 0x48, 0x8b, 0xf9 };

const byte end_pattern_4[] = { 0x48, 0x83, 0xc4, 0x20, 0x5f, 0xc3 };

/* Begin Function:

PUSH RDI

SUB RSP, 0x20

MOV RDI, RCX

End Function:

ADD RSP, 0x20

POP RDI

RET

*/

const byte start_pattern_5[] = { 0x57, 0x48, 0x83, 0xec, 0x20, 0x8b, 0xf9 };

const byte end_pattern_5[] = { 0x48, 0x83, 0xc4, 0x20, 0x5f, 0xc3 };

/* Begin Function:

PUSH RDI

SUB RSP, 0x20

MOV EDI, ECX

End Function:

ADD RSP, 0x20

POP RDI

RET

*/

const byte start_pattern_6[] = { 0x57, 0x48, 0x83, 0xec, 0x20, 0x8b, 0xf1 };

const byte end_pattern_6[] = { 0x48, 0x83, 0xc4, 0x20, 0x5f, 0xc3 };

/* Begin Function:

PUSH RDI

SUB RSP, 0x20

MOV ESI, ECX

End Function:

ADD RSP, 0x20

POP RDI

RET

*/

const byte start_pattern_7[] = { 0xff, 0xf3, 0x48, 0x83, 0xec, 0x20, 0x48, 0x8d, 0x0d };

const byte end_pattern_7[] = { 0x48, 0x83, 0xc4, 0x20, 0x5b, 0xc3 };

/* Begin Function:

PUSH RBX

SUB RSP, 0x20

LEA RCX, ’immed’

End Function:

ADD RSP, 0x20

POP RBX

RET

*/

72

const byte start_pattern_8[] = { 0x57, 0x48, 0x83, 0xec, 0x40, 0x48, 0x8b, 0xe9 };

const byte end_pattern_8[] = { 0x48, 0x83, 0xc4, 0x40, 0x5f, 0xc3 };

/* Begin Function:

PUSH RDI

SUB RSP, 0x40

MOV RBP, RCX

End Function:

ADD RSP, 0x40

POP RDI

RET

*/

const byte start_pattern_9[] = { 0x57, 0x48, 0x83, 0xec, 0x20, 0x48, 0x8b, 0xf1 };

const byte end_pattern_9[] = { 0x48, 0x83, 0xc4, 0x20, 0x5f, 0xc3 };

/* Begin Function:

PUSH RDI

SUB RSP, 0x20

MOV RSI, RCX

End Function:

ADD RSP, 0x20

POP RDI

RET

*/

const byte start_pattern_10[] = { 0x57, 0x48, 0x83, 0xec, 0x20, 0x48, 0x8b, 0xe9 };

const byte end_pattern_10[] = { 0x48, 0x83, 0xc4, 0x20, 0x5f, 0xc3 };

/* Begin Function:

PUSH RDI

SUB RSP, 0x20

MOV RBP, RCX

End Function:

ADD RSP, 0x20

POP RDI

RET

*/

const byte start_pattern_11[] = { 0x57, 0x48, 0x83, 0xec, 0x30, 0x48, 0x8b, 0xe9 };

const byte end_pattern_11[] = { 0x48, 0x83, 0xc4, 0x30, 0x5f, 0xc3 };

/* Begin Function:

PUSH RDI

SUB RSP, 0x30

MOV RBP, RCX

End Function:

ADD RSP, 0x30

POP RDI

RET

*/

const byte start_pattern_12[] = { 0x57, 0x48, 0x83, 0xec, 0x20, 0x48, 0x8b, 0x05 };

const byte end_pattern_12[] = { 0x48, 0x83, 0xc4, 0x20, 0x5f, 0xc3 };

/* Begin Function:

PUSH RDI

SUB RSP, 0x20

MOV RAX, ’immed’

End Function:

ADD RSP, 0x20

POP RDI

RET

*/

const byte omva_1[] = { 0x48, 0x8b, 0x5c, 0x24, 0x30 }; // MOV RBX, [RSP+0x30]

73

const byte omva_2[] = { 0x48, 0x8b, 0x74, 0x24, 0x38 }; // MOV RSI, [RSP+0x38]

#endif

#ifndef GLOBALS_H

#define GLOBALS_H

#include <stdio.h>

#include <tchar.h>

#include <windows.h>

#include <string>

#include <psapi.h>

#include <iostream>

#include <fstream>

#include <io.h>

#include <capstone.h>

#include <inttypes.h>

#endif

// stdafx.h : include file for standard system include files,

// or project specific include files that are used frequently, but

// are changed infrequently

//

#pragma once

#include "targetver.h"

#include <WinSock2.h>

#include <Ws2tcpip.h>

#pragma comment(lib, "Ws2_32.lib")

#include <stdio.h>

#include <tchar.h>

#include "Library.h"

#include "Function.h"

#include "Operator.h"

#pragma once

// Including SDKDDKVer.h defines the highest available Windows platform.

// If you wish to build your application for a previous Windows platform, include WinSDKVer.h and

// set the _WIN32_WINNT macro to the platform you wish to support before including SDKDDKVer.h.

#include <SDKDDKVer.h>

// FaultInjection.cpp : Defines the entry point for the console application.

//

#include "stdafx.h"

#include "globals.h"

#include "Operators.h"

#include "Operator.h"

#include "Library.h"

using namespace std;

bool SendSyslog();

74

char* GetAddressOfData(HANDLE process, const char *data, size_t len);

int _tmain(int argc, _TCHAR* argv[]) {

// Declarations

DWORD aProcesses[1024], cbNeeded, cProcesses;

TCHAR szProcessName[MAX_PATH] = TEXT("<unknown>");

unsigned int i;

// Get All pids

if (!EnumProcesses(aProcesses, sizeof(aProcesses), &cbNeeded)){

cerr << "Failed to get all PIDs: " << GetLastError() << endl;

return -1;

}

// Get screen width

CONSOLE_SCREEN_BUFFER_INFO csbi;

GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbi);

int dwidth = csbi.srWindow.Right - csbi.srWindow.Left;

cout << "Running Processes" << endl;

printf("%-6s %-*s\n", "PID", dwidth - 7, "Process");

cout << string(3, ’-’) << " " << string(dwidth - 7, ’-’) << endl;

cProcesses = cbNeeded / sizeof(DWORD);

for (i = 0; i < cProcesses; i++) {

if (aProcesses[i] != 0) {

HANDLE hProc = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE,

aProcesses[i]);

if (hProc != NULL) {

HMODULE hMod;

DWORD cbNeededMod;

if (EnumProcessModules(hProc, &hMod, sizeof(hMod), &cbNeededMod)) {

GetModuleBaseName(hProc, hMod, szProcessName, sizeof(szProcessName

) / sizeof(TCHAR));

}

_tprintf(TEXT("%6u %-*s\n"), aProcesses[i], dwidth - 7, szProcessName);

CloseHandle(hProc);

}

}

}

// Which process?

string s_pid = "";

cout << endl << "Into which process would you like to inject faults? [PID]: ";

getline(cin, s_pid);

int pid = stoi(s_pid);

HANDLE hTarget = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid);

if (!hTarget) {

cerr << "Failed to open process (check your privilege): " << GetLastError() << endl;

return -1;

}

// Fault Injection or Memory Corruptions?

string s_fivsmc = "";

cout << endl << "Would you like to inject Faults, or corrupt Memory? [f|m]: ";

getline(cin, s_fivsmc);

if (s_fivsmc.find("m") != string::npos){

string s_query = "";

cout << endl << "What are you looking for in process memory?: ";

getline(cin, s_query);

char* ret = GetAddressOfData(hTarget, s_query.c_str(), s_query.length());

if (ret) {

75

cout << "Found at addr: " << (void*)ret << endl;

size_t bytesRead;

size_t sizeToRead = s_query.size();

char *buf = (char *)malloc(sizeToRead + 1);

ReadProcessMemory(hTarget, ret, buf, sizeToRead, &bytesRead);

buf[sizeToRead] = ’\0’;

cout << "Num bytes read: " << bytesRead << endl;

cout << "Contents: " << string(buf) << endl;

// Overwrite it

byte *null_array = (byte *)malloc(bytesRead);

fill_n(null_array, bytesRead, 0x00);

SIZE_T mem_bytes_written = 0;

if (WriteProcessMemory(hTarget, (LPVOID)ret, null_array, bytesRead, &

mem_bytes_written) != 0) {

cout << "Bytes written: " << mem_bytes_written << endl;

cout << "Successful corruption." << endl;

return 0;

} else {

cerr << "Failed to corrupt memory: " << GetLastError() << endl;

return -1;

}

} else {

cout << "Not found" << endl;

}

return 0;

}

// Enumerate modules within process

HMODULE hmods[1024];

cout << "DLLs currently loaded in target process:" << endl;

printf("%-4s %-*s\n", "ID", dwidth-5, "Module Name:");

cout << string(4, ’-’) << " " << string(dwidth - 5, ’-’) << endl;

if (EnumProcessModules(hTarget, hmods, sizeof(hmods), &cbNeeded)) {

for (i = 0; i < (cbNeeded / sizeof(HMODULE)); i++) {

TCHAR szModName[MAX_PATH];

if (GetModuleFileNameEx(hTarget, hmods[i], szModName, sizeof(szModName) / sizeof

(TCHAR))) {

_tprintf(TEXT("%4d %-*s\n"), i, dwidth-5, szModName);

} else {

cerr << "Failed to Print enumerated list of modules: " << GetLastError()

<< endl;

}

}

} else {

cerr << "Failed to enum the modules: " << GetLastError() << endl;

}

// Which Module?

string s_mod_id = "";

cout << "Into which module would you like to inject faults? [ID]: ";

getline(cin, s_mod_id);

int mod_id = stoi(s_mod_id);

MODULEINFO lModInfo = { 0 };

cout << "Dll Information:" << endl;

if (GetModuleInformation(hTarget, hmods[mod_id], &lModInfo, sizeof(lModInfo))){

cout << "\t Base Addr: " << lModInfo.lpBaseOfDll << endl;

cout << "\t Entry Point: " << lModInfo.EntryPoint << endl;

cout << "\t Size of image: " << lModInfo.SizeOfImage << endl << endl;

} else {

cerr << "Failed to get module information: " << GetLastError() << endl;

76

return -1;

}

// Get module name

TCHAR szModName[MAX_PATH] = TEXT("<unknown>");

GetModuleFileNameEx(hTarget, hmods[mod_id], szModName, sizeof(szModName) / sizeof(TCHAR));

// Build library object

Library *library = new Library(hTarget, (DWORD64)lModInfo.lpBaseOfDll,

lModInfo.SizeOfImage, string((char *)

&szModName));

// Save library for future static analysis

library->write_library_to_disk("C:\\memdump.dll");

library->inject();

// Send syslog message

SendSyslog();

return 0;

}

bool SendSyslog() {

WSADATA wsaData;

int iResult = WSAStartup(MAKEWORD(2, 2), &wsaData);

if (iResult != NO_ERROR) {

cerr << "Couldn’t send syslog message" << endl;

return false;

}

SOCKET ConnectSocket;

ConnectSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

if (ConnectSocket == INVALID_SOCKET) {

cerr << "Couldn’t send syslog message" << endl;

WSACleanup();

return false;

}

sockaddr_in clientService;

clientService.sin_family = AF_INET;

clientService.sin_addr.s_addr = inet_addr("192.168.224.7");

clientService.sin_port = htons(514);

iResult = connect(ConnectSocket, (SOCKADDR *)&clientService, sizeof(clientService));

if (iResult == SOCKET_ERROR) {

cerr << "Couldn’t send syslog message" << endl;

closesocket(ConnectSocket);

WSACleanup();

return false;

}

char *sendbuf = "FAULT_INJECTED_SUCCESSFULLY";

iResult = send(ConnectSocket, sendbuf, (int)strlen(sendbuf), 0);

if (iResult == SOCKET_ERROR) {

cerr << "Couldn’t send syslog message" << endl;

closesocket(ConnectSocket);

WSACleanup();

return false;

}

cout << "Successfully sent syslog message" << endl;

closesocket(ConnectSocket);

WSACleanup();

return true;

}

77

char* GetAddressOfData(HANDLE process, const char *data, size_t len) {

SYSTEM_INFO si;

GetSystemInfo(&si);

MEMORY_BASIC_INFORMATION info;

vector<char> chunk;

char* p = 0;

while(p < si.lpMaximumApplicationAddress) {

if(VirtualQueryEx(process, p, &info, sizeof(info)) == sizeof(info)) {

p = (char*)info.BaseAddress;

chunk.resize(info.RegionSize);

SIZE_T bytesRead;

if(ReadProcessMemory(process, p, &chunk[0], info.RegionSize, &bytesRead))

for(size_t i = 0; i < (bytesRead - len); ++i)

if(memcmp(data, &chunk[i], len) == 0)

return (char*)p + i;

p += info.RegionSize;

}

}

return 0;

}

#include "stdafx.h"

#include "Function.h"

#include "Operators.h"

Function::Function(HANDLE _target, DWORD64 _start, DWORD64 _end, byte *_code) {

hTarget = _target;

start_addr = _start;

end_addr = _end;

size = end_addr - start_addr;

buf = _code;

local_injection_points = map < DWORD64, Operator *>();

// Build Capstone (CS) Array of code

if (cs_open(CS_ARCH_X86, CS_MODE_64, &cs_handle) != CS_ERR_OK)

cerr << "Error disassembling code." << endl;

// Enable op details

cs_option(cs_handle, CS_OPT_DETAIL, CS_OPT_ON);

//cs_option(cs_handle, CS_OP_DETAIL, CS_OPT_ON);

cs_count = cs_disasm(cs_handle, buf, size, start_addr, 0, &code_buf);

if (cs_count == 0)

cerr << "Error disassembling code." << endl;

// Build Injection points based on disassembled code

build_injection_points();

}

Function::~Function() {

cs_close(&cs_handle);

cs_free(code_buf, size);

}

// Public Functions

bool Function::inject() {

78

// For each injection point in the funciton, ask the user if they would like to inject

for (map<DWORD64, Operator *>::iterator it = local_injection_points.begin();

it != local_injection_points.end(); ++it) {

// If the user injects, return true;

//if (inject(it->second, it->first))

//return true;

inject(it->second, it->first);

Sleep(100);

}

return false;

}

// Private Functions

bool Function::build_injection_points() {

find_operators_mfc();

//find_operators_ompla();

return true;

}

// Returns address of injection point for "Operator of Missing Localize Part of the Algorithm (OMPLA)"

bool Function::find_operators_ompla() {

// Constraint 2 (C02): Call must not be only statement in the block

if (cs_count < 10) return false;

for (size_t j = 0; j < cs_count; j++) {

if (string(code_buf[j].mnemonic).find("mov") != string::npos){

// Constraint 10: Statements must be in the same block and do not include loops

size_t c = 0;

for (size_t i = j + 1; i < cs_count; i++)

if (string(code_buf[j].mnemonic).find("mov") != string::npos) {

c++;

continue;

}

if (c > 2 && c <= 5) {

// Doesn’t violate any of the OMPLA constraints, add it

Operator *op = new Operator(code_buf[j].bytes, code_buf[j].size);

local_injection_points[code_buf[j].address] = op;

}

}

}

return true;

}

// Returns address of injection point for "Operator for Missing Function Call (OMFC)"

bool Function::find_operators_mfc() {

// Constraint 2 (C02): Call must not be only statement in the block

if (cs_count < 6) return false;

for (size_t j = 0; j < cs_count; j++) {

if (string(code_buf[j].mnemonic).find("call") != string::npos){

// Constraint 1 (C01): Return value of the function (EAX/RAX) must not be used.

bool constraint01 = false;

for (size_t i = j + 1; i < cs_count; i++) {

cs_detail *details = code_buf[i].detail;

if (code_buf[i].detail) {

for (size_t k = 0; k < details->regs_read_count; k++) {

string modreg = string(cs_reg_name(cs_handle, details->

regs_read[k]));

if (modreg.find("eax") != string::npos || modreg.find("rax

") != string::npos)

constraint01 = true;

79

}

}

}

// Doesn’t violate any of the OMFC constraints, add it

if (!constraint01) {

Operator *op = new Operator(code_buf[j].bytes, code_buf[j].size);

local_injection_points[code_buf[j].address] = op;

}

}

}

return true;

}

bool Function::inject(Operator *op, DWORD64 addr) {

// Ready to continue?

//string cont = "";

//printf("Ready to inject %d bytes at: 0x%X\n\n", op->size(), addr);

//cout << "Continue? [Y|n]: ";

//getline(cin, cont);

//if (cont.find("n") != string::npos || cont.find("N") != string::npos) {

//cout << "Aborting" << endl;

//return false;

//}

byte *nop_array = (byte *)malloc(op->size());

byte *tmp_buf = (byte *)malloc(op->size());

fill_n(nop_array, op->size(), 0x90);

SIZE_T mem_bytes_written = 0;

if (WriteProcessMemory(hTarget, (LPVOID)addr, nop_array, op->size(), &mem_bytes_written) != 0)

{

cout << "Attemting injection..." << endl;

// Check to make sure the OS allowed the operation

SIZE_T num_bytes_read = 0;

int count = 0;

while (true) {

if (ReadProcessMemory(hTarget, (DWORD64 *)addr, tmp_buf, op->size(), &

num_bytes_read) != 0) {

cout << string((char *)tmp_buf) << endl;

int i;

for (i = 0; i < op->size(); i++) {

if (tmp_buf[i] != nop_array[i])

break;

}

if (i >= op->size() - 1) {

cout << "Bytes written: " << mem_bytes_written << endl;

cout << "Successful injection." << endl;

return true;

}

}

}

} else {

cerr << "Failed to inject fault into memory: " << GetLastError() << endl;

return false;

}

return false;

}

#include "stdafx.h"

#include "Process.h"

80

Library::Library(HANDLE _target, DWORD64 _start, DWORD _size, string _path) {

hTarget = _target;

start_addr = _start;

image_size = _size;

name = _path;

buf = (byte *)malloc(image_size);

function_patterns = map < Operator *, Operator * >();

functions = vector < Function *>();

if (!buf) {

cerr << "Failed to allocate space for memory contents: " << GetLastError() << endl;

CloseHandle(hTarget);

return;

}

read_memory_into_bufer();

build_operator_map();

find_functions();

}

Library::~Library() {

free(buf);

CloseHandle(hTarget);

}

// PUBLIC FUNCTIONS

bool Library::write_library_to_disk(string path) {

cout << "Writing static copy of memory contents for analysis to " << path << endl;

FILE *fp;

fopen_s(&fp, path.c_str(), "w");

SIZE_T bytes_written = 0;

while (bytes_written < image_size) {

bytes_written += fwrite(buf, 1, image_size, fp);

}

fclose(fp);

cout << "Wrote " << bytes_written << " bytes." << endl << endl;

return true;

}

bool Library::inject() {

// For each function in the module, call public inject funciton

while (true) {

for (vector< Function *>::iterator it = functions.begin(); it != functions.end(); ++it)

{

if ((*it)->inject())

return true;

}

}

return true;

}

// PRIVATE FUNCTIONS

bool Library::read_memory_into_bufer() {

SIZE_T num_bytes_read = 0;

int count = 0;

if (ReadProcessMemory(hTarget, (DWORD64 *)start_addr, buf, image_size, &num_bytes_read) != 0)

{

cout << "Buffered memory contents. Got " << num_bytes_read << " bytes." << endl << endl

;

return true;

}

else {

cout << "Failed to read memory: " << GetLastError() << endl;

81

return false;

}

return false;

}

bool Library::build_operator_map() {

function_patterns[new Operator(start_pattern_1, sizeof(start_pattern_1))] =

new Operator(end_pattern_1, sizeof(end_pattern_1));

function_patterns[new Operator(start_pattern_2, sizeof(start_pattern_2))] =

new Operator(end_pattern_2, sizeof(end_pattern_2));

function_patterns[new Operator(start_pattern_3, sizeof(start_pattern_3))] =

new Operator(end_pattern_3, sizeof(end_pattern_3));

function_patterns[new Operator(start_pattern_4, sizeof(start_pattern_4))] =

new Operator(end_pattern_4, sizeof(end_pattern_4));

function_patterns[new Operator(start_pattern_5, sizeof(start_pattern_5))] =

new Operator(end_pattern_5, sizeof(end_pattern_5));

function_patterns[new Operator(start_pattern_6, sizeof(start_pattern_6))] =

new Operator(end_pattern_6, sizeof(end_pattern_6));

function_patterns[new Operator(start_pattern_7, sizeof(start_pattern_7))] =

new Operator(end_pattern_7, sizeof(end_pattern_7));

function_patterns[new Operator(start_pattern_8, sizeof(start_pattern_8))] =

new Operator(end_pattern_8, sizeof(end_pattern_8));

function_patterns[new Operator(start_pattern_9, sizeof(start_pattern_9))] =

new Operator(end_pattern_9, sizeof(end_pattern_9));

function_patterns[new Operator(start_pattern_10, sizeof(start_pattern_10))] =

new Operator(end_pattern_10, sizeof(end_pattern_10));

function_patterns[new Operator(start_pattern_11, sizeof(start_pattern_11))] =

new Operator(end_pattern_11, sizeof(end_pattern_11));

function_patterns[new Operator(start_pattern_12, sizeof(start_pattern_12))] =

new Operator(end_pattern_12, sizeof(end_pattern_12));

return true;

}

bool Library::find_functions() {

for (map < Operator *, Operator * >::iterator it = function_patterns.begin();

it != function_patterns.end(); ++it) {

DWORD64 begin = 0;

while (find_pattern(it->first, begin, image_size, &begin)) {

DWORD64 end = 0;

if (find_pattern(it->second, begin, image_size, &end)) {

functions.push_back(new Function(hTarget, start_addr + begin + (it->first

)->size(),

start_addr +

end - (it

->second)

->size(),

&buf[begin

]));

}

begin++;

}

}

return true;

}

// Search ’buf’ for ’pattern’ at ’start’. If found, sets ’offset’, and returns true.

bool Library::find_pattern(Operator *op, DWORD64 start, DWORD64 stop, DWORD64 *location) {

const byte *pattern = op->pattern();

for (DWORD64 i = start; i < stop; i++) {

if (buf[i] == pattern[0]) {

for (int j = 1; j < op->size(); j++) {

if (buf[i + j] != pattern[j])

break;

82

if (j < op->size() - 1)

continue;

*location = i;

return true;

}

}

}

return false;

}

#include "stdafx.h"

#include "Operator.h"

Operator::Operator(const byte *pattern, DWORD64 size) {

_size = size;

_pattern = (byte *)malloc(_size);

memcpy(_pattern, pattern, size);

}

Operator::~Operator() {

free(_pattern);

}

// stdafx.cpp : source file that includes just the standard includes

// FaultInjection.pch will be the pre-compiled header

// stdafx.obj will contain the pre-compiled type information

#include "stdafx.h"

// TODO: reference any additional headers you need in STDAFX.H

// and not in this file

83

Appendix B. ResourceLeak Source Code

###

#

W-SWFIT: Resource Leak

Authors: Paul Jordan

Date Created: 8 May 2016

Description: Makefile for the W-SWFIT Resource Leak project.

#

Copyright (c) 2016

#

###

PROGRAM=resourceleak

C_FILES:=$(shell find . -iname "*.cpp")

OBJS:=$(patsubst %.cpp, %.o, $(C_FILES))

CFLAGS=-Wall -ffast-math -O3 -std=c++11 -I./incl/

LDFLAGS=

SRC=src

native: CC=g++

windows: CC=/usr/local/gcc-4.8.0-qt-4.8.4-for-mingw32/win32-gcc/bin/i586-mingw32-g++

all: native

windows: $(OBJS)

$(CC) $(CFLAGS) $(OBJS) $(LDFLAGS) -o $(PROGRAM).exe

native: $(OBJS)

$(CC) $(CFLAGS) $(OBJS) $(LDFLAGS) -o $(PROGRAM)

%.o: %.cpp

$(CC) $(CFLAGS) -c $< -o $@

%: %.cpp

$(CC) $(CFLAGS) -o $@ $<

clean:

$(RM) $(PROGRAM) *.o $(SRC)/*.o $(PROGRAM).exe

/***/

/* */

/* resourceleak.cpp */

/* Project: W-SWFIT: Resource Leak */

/* Authors: Paul Jordan */

/* Date Created: 8 May 2016 */

/* */

/* Description: Small app designed to fill up memory, disk, or CPU at a */

/* configurable rate in order to force a system to fail. This application */

/* simulates a poorly written third-party application which might cause */

/* failure in an underlying system. */

/* */

/* Copyright (c) 2016 */

/* */

/***/

#include "globals.hpp"

#include "memory.hpp"

#include "cpu.hpp"

//#include "disk.hpp"

using namespace std;

int main(int argc, char *argv[]) {

// Process Command Line Args

if (argc < 3) {

84

cerr << "Need to specify which type of leak [m]emory, or [c]pu." << endl;

cerr << "usage: "<< argv[0] <<" -[m|c] <rate>" << endl;

return 1;

}

Resource *leak = NULL;

if (string(argv[1]).compare("-m") == 0)

leak = new Memory();

else if (string(argv[1]).compare("-c") == 0)

leak = new CPU();

else {

cerr << "Unrecognized leak type. Specify [m]emory, or [c]pu." << endl;

return 1;

}

int rate;

string str_rate = string(argv[2]);

if (! (istringstream(str_rate) >> rate)) rate = 0;

if (rate <= 0 || rate > 100) {

cerr << "Unrecognized rate. Specify rate between 1-100." << endl;

return 1;

}

if (leak)

leak->start(1);

while(true) { this_thread::sleep_for(chrono::seconds(1)); }

return 0;

}

/***/

/* */

/* cpu.cpp */

/* Project: W-SWFIT: Resource Leak */

/* Authors: Paul Jordan */

/* Date Created: 8 May 2016 */

/* Description: Implementation file for the CPU leak class. */

/* */

/* Copyright (c) 2016 */

/* */

/***/

#include "cpu.hpp"

bool CPU::start(int rate) {

_running = true;

_rate = rate;

__rate = rate; // mutable (degrading) rate

_leak = thread(&CPU::leak, this);

return true;

}

void CPU::leak() {

while(_running) {

if (__rate > 1) { __rate *= .99; }

else { __rate = 0; }

this_thread::sleep_for(chrono::milliseconds((int)__rate));

}

}

bool CPU::stop() {

_running = false;

return true;

85

}

/***/

/* */

/* Memory.cpp */

/* Project: W-SWFIT: Resource Leak */

/* Authors: Paul Jordan */

/* Date Created: 8 May 2016 */

/* Description: Implementation file for the Memory leak class. */

/* */

/* Copyright (c) 2016 */

/* */

/***/

#include <math.h>

#include "memory.hpp"

Memory::Memory() {

storage = vector<void *>();

}

Memory::~Memory() {

storage.clear();

}

bool Memory::start(int rate) {

_running = true;

_rate = rate;

_leak = thread(&Memory::leak, this);

return true;

}

void Memory::leak() {

while(_running) {

void *buf = malloc(pow(10,6)); // Allocate 1MB at rate

storage.push_back(buf);

this_thread::sleep_for(chrono::milliseconds(_rate));

}

}

bool Memory::stop() {

_running = false;

return true;

}

/***/

/* */

/* cpu.hpp */

/* Project: W-SWFIT: Resource Leak */

/* Authors: Paul Jordan */

/* Date Created: 8 May 2016 */

/* Description: Header file for the CPU leak class. */

/* */

/* Copyright (c) 2016 */

/* */

/***/

#ifndef CPU_H

#define CPU_H

#include "globals.hpp"

#include "resource.hpp"

using namespace std;

class CPU : public Resource {

86

public:

CPU() {}

~CPU() {}

bool start(int rate); // smaller number = faster leak

bool stop();

bool running() const { return _running; }

int rate() const { return _rate; }

private:

void leak();

bool _running = false;

int _rate = 0;

double __rate = 0;

thread _leak;

};

#endif

#ifndef GLOBALS_H

#define GLOBALS_H

#ifdef __MINGW32__

#include "mingw.thread.h"

#endif

#include <stdlib.h>

#include <chrono>

#include <vector>

#include <thread>

#include <iostream>

#include <sstream>

#endif

/***/

/* */

/* Memory.hpp */

/* Project: W-SWFIT: Resource Leak */

/* Authors: Paul Jordan */

/* Date Created: 8 May 2016 */

/* Description: Header file for the Memory leak class. */

/* */

/* Copyright (c) 2016 */

/* */

/***/

#ifndef MEMORY_H

#define MEMORY_H

#include "globals.hpp"

#include "resource.hpp"

using namespace std;

class Memory : public Resource {

public:

Memory();

~Memory();

bool start(int rate); // # of milliseconds to sleep

// before allocating more memory

// (smaller number = faster leak)

87

bool stop();

bool running() const { return _running; }

int rate() const { return _rate; }

private:

void leak();

vector<void *> storage;

bool _running = false;

int _rate = 0;

thread _leak;

};

#endif

/***/

/* */

/* Resource.hpp */

/* Project: W-SWFIT: Resource Leak */

/* Authors: Paul Jordan */

/* Date Created: 8 May 2016 */

/* Description: Abstract resource header file. Each resource implements */

/* abstract class. */

/* */

/* Copyright (c) 2016 */

/* */

/***/

#ifndef RESOURCE_H

#define RESOURCE_H

#include "globals.hpp"

class Resource {

public:

virtual bool start(int rate) = 0;

virtual bool stop() = 0;

bool running() const { return _running; }

int rate() const { return _rate; }

private:

bool _running = false;

int _rate = 0;

};

#endif

88

Appendix C. Windows Updates

Table 13. Updates applied to Windows Server 2008 R2 x64 Edition.

Description HotFixID Description HotFixID

Update KB982861 Security Update KB2676562

Security Update KB2032276 Security Update KB2685939

Security Update KB2207559 Security Update KB2690533

Security Update KB2296011 Security Update KB2691442

Security Update KB2305420 Security Update KB2698365

Update KB2345886 Security Update KB2705219

Security Update KB2347290 Security Update KB2706045

Security Update KB2387149 Security Update KB2712808

Security Update KB2393802 Update KB2718704

Security Update KB2419640 Security Update KB2729451

Security Update KB2423089 Security Update KB2736418

Security Update KB2425227 Security Update KB2742598

Security Update KB2442962 Security Update KB2743555

Update KB2454826 Update KB2748349

Security Update KB2483614 Update KB2749655

Update KB2506014 Security Update KB2753842

Security Update KB2506212 Security Update KB2756920

Security Update KB2509553 Security Update KB2757638

Security Update KB2511455 Security Update KB2758857

Update KB2533552 Security Update KB2765809

Security Update KB2535512 Security Update KB2769369

Security Update KB2536275 Security Update KB2770660

Security Update KB2536276 Security Update KB2772930

89

Security Update KB2544893 Update KB2779562

Update KB2552343 Security Update KB2785220

Security Update KB2560656 Security Update KB2789644

Security Update KB2564958 Security Update KB2790113

Security Update KB2570947 Security Update KB2790655

Security Update KB2584146 Security Update KB2807986

Security Update KB2585542 Security Update KB2813170

Security Update KB2604114 Security Update KB2813347

Security Update KB2618451 Security Update KB2840149

Security Update KB2620704 Security Update KB972270

Security Update KB2621440 Update KB974431

Security Update KB2631813 Security Update KB974571

Security Update KB2643719 Hotfix KB975467

Security Update KB2644615 Security Update KB975560

Security Update KB2645640 Update KB977074

Security Update KB2647170 Security Update KB978542

Security Update KB2653956 Security Update KB978601

Security Update KB2654428 Security Update KB979309

Security Update KB2655992 Security Update KB979482

Security Update KB2656355 Security Update KB979687

Security Update KB2656410 Security Update KB979688

Security Update KB2658846 Update KB979900

Security Update KB2659262 Update KB980408

Update KB2661254 Security Update KB982132

Security Update KB2667402 Security Update KB982799

90

Appendix D. List of Abbreviations

AD Active Directory

AFP Adaptive Failure Prediction

API Application Programming Interface

ASLR Address Space Layout Randomization

AUC Area Under the Curve

CPU Central Processing Unit

CRISP-DM Cross Industry Standard Process for Data

Mining

CSCS Cyber Security and Control System

D-PLG Distributed PowerShell Load Generator

DC Domain Controller

DNS Domain Name System

DOD Department of Defense

FN False Negative

FP False Positive

FPR False Positive Rate

G-SWFIT General Software Fault Injection Technique

GB Gigabyte

GHSMM Generalized Hidden Semi-Markov Model

GHz Gigahertz

IP Internet Protocol

MS Microsoft

91

NOS Network Operation Squadrons

NPV Negative Predictive Value

ODC Orthogonal Defect Classification

OFP Online Failure Prediction

PFM Proactive Fault Management

RDP Remote Desktop Protocol

ROC Receiver Operating Characteristic

SQL Structured Query Language

SVM Support Vector Machine

TN True Negative

TP True Positive

TPR True Positive Rate

VM Virtual Machine

W-SWFIT Windows Software Fault Injection Tool

92

Bibliography

1. F. Salfner, M. Lenk, and M. Malek, “A survey of online failure prediction meth-
ods,” ACM Computing Surveys (CSUR), vol. 42, no. 3, 2010.

2. I. Irrera, M. Vieira, and J. Duraes, “Adaptive failure prediction for computer
systems: A framework and a case study,” in Proceedings of the 2015 IEEE 16th
International Symposium on High Assurance Systems Engineering (HASE 2015),
pp. 142–149, 2015.

3. J. Duraes and H. Madeira, “Emulation of software faults: A field data study
and a practical approach,” IEEE Transactions on Software Engineering, vol. 32,
pp. 849–867, Nov. 2006.

4. C. Schmidt, Agile Software Development Teams. Progress in Information Systems,
Springer International Publishing, 2016.

5. E. Bauer and R. Adams, Reliability and Availability of Cloud Computing. John
Wiley & Sons, 2012.

6. G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Microreboot - a
technique for cheap recovery,” in Proceedings of the 6th USENIX Symposium on
Operating System Design and Implementation (OSDI), vol. 4, pp. 31–44, 2004.

7. A. Avižienis, J. Laprie, B. Randell, and C. Landwehr, “Basic concepts and tax-
onomy of dependable and secure computing,” IEEE Transactions on Dependable
and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

8. F. Salfner, M. Schieschke, and M. Malek, “Predicting failures of computer sys-
tems: A case study for a telecommunication system,” in Proceedings of the
20th IEEE International Parallel and Distributed Processing Symposium (IPDPS
2006), Apr. 2006.

9. F. Salfner and M. Malek, “Using hidden semi-markov models for effective online
failure prediction,” in Proceedings of the 2007 26th IEEE International Sympo-
sium on Reliable Distributed Systems (SRDS 2007), pp. 161–174, 2007.

10. C. Domeniconi, C. Perng, R. Vilalta, and S. Ma, “A classification approach for
prediction of target events in temporal sequences,” in Proceedings of the 6th
European Conference for Principles of Data Mining and Knowledge Discovery,
pp. 125–137, 2002.

11. I. Fronza, A. Sillitti, G. Succi, M. Terho, and J. Vlasenko, “Failure prediction
based on log files using random indexing and support vector machines,” Journal
of Systems and Software, vol. 86, no. 1, pp. 2–11, 2013.

93

12. E. Fulp, G. Fink, and J. Haack, “Predicting computer system failures using sup-
port vector machines,” in Proceedings of the 1st USENIX Workshop on Analysis
of System Logs (WASL 2008), pp. 1–8, 2008.

13. J. Murray, G. Hughes, and K. Kreutz-Delgado, “Machine learning methods for
predicting failures in hard drives: A multiple-instance application,” Journal of
Machine Learning Research, vol. 6, pp. 783–816, 2005.

14. M. Sonoda, Y. Watanabe, and Y. Matsumoto, “Prediction of failure occurrence
time based on system log message pattern learning,” in Proceedings of the 2012
IEEE Network Operations and Management Symposium (NOMS 2012), pp. 578–
581, Apr. 2012.

15. Y. Watanabe, H. Otsuka, M. Sonoda, S. Kikuchi, and Y. Matsumoto, “Online
failure prediction in cloud datacenters by real-time message pattern learning,”
in Proceedings of the 4th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom 2012), pp. 504–511, 2012.

16. Y. Watanabe, “Online failure prediction in cloud datacenters,” Fujitsu Scientific
and Technical Journal, vol. 50, no. 1, pp. 66–71, 2014.

17. I. Irrera, J. Duraes, H. Madeira, and M. Vieira, “Assessing the impact of vir-
tualization on the generation of failure prediction data,” in Proceedings of the
2013 Sixth Latin-American Symposium on Dependable Computing (LADC 2013),
pp. 92–97, 2013.

18. I. Irrera and M. Vieira, “A practical approach for generating failure data for
assessing and comparing failure prediction algorithms,” in Proceedings of the
2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing
(PRDC 2014), pp. 86–95, 2014.

19. I. Irrera, J. Duraes, M. Vieira, and H. Madeira, “Towards identifying the best
variables for failure prediction using injection of realistic software faults,” in Pro-
ceedings of the 2010 IEEE 16th Pacific Rim International Symposium on Depend-
able Computing (PRDC 2010), pp. 3–10, 2010.

20. N. Kikuchi, T. Yoshimura, R. Sakuma, and K. Kono, “Do injected faults cause
real failures? a case study of linux,” in Proceedings of the 25th IEEE Inter-
national Symposium on Software Reliability Engineering Workshops (ISSREW
2014), pp. 174–179, 2014.

21. I. Irrera, C. Pereira, and M. Vieira, “The time dimension in predicting failures:
A case study,” in Proceedings of the 2013 Sixth Latin-American Symposium on
Dependable Computing (LADC 2013), pp. 86–91, 2013.

22. R. Vaarandi, “Sec - a lightweight event correlation tool,” in Proceedings of the
2002 IEEE Workshop on IP Operations and Management, pp. 111–115, IEEE,
2002.

94

23. P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and
R. Wirth, “CRISP-DM 1.0 step-by-step data mining guide,” tech. rep., The
CRISP-DM consortium, Aug. 2000.

24. D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa, “Experimental analysis of
binary-level software fault injection in complex software,” in Proceedings of the
9th European Dependable Computing Conference, pp. 162–172, 2012.

25. R. Natella, D. Cotroneo, J. Duraes, and H. Madeira, “Representativeness anal-
ysis of injected software faults in complex software,” in Proceedings of the 2010
IEEE/IFIP International Conference on Dependable Systems & Networks (DSN),
pp. 437–446, 2010.

26. K. Umadevi and S. Rajakumari, “A review on software fault injection methods
and tools,” International Journal of Innovative Research in Computer and Com-
munication Engineering, vol. 3, no. 3, pp. 1582–1587, 2015.

27. N. Bridge and C. Miller, “Orthogonal defect classification using defect data to
improve software development,” Software Quality, vol. 3, no. 1, pp. 1–8, 1998.

28. E. Martins, C. Rubira, and N. Leme, “Jaca: A reflective fault injection tool
based on patterns,” in Proceedings of the International Conference on Dependable
Systems and Networks (DSN 2002), pp. 483–487, 2002.

29. B. Sanches, T. Basso, and R. Moraes, “J-SWFIT: A java software fault injec-
tion tool,” in Proceedings of the 5th Latin-American Symposium on Dependable
Computing (LADC 2011), pp. 106–115, Apr. 2011.

30. P. Jordan, C. Van Patten, G. Peterson, and A. Sellers, “Distributed powershell
load generator (D-PLG): A new tool for dynamically generating network traffic,”
in Proceedings of the 6th International Conference on Simulation and Modeling
Methodologies, Technologies, and Applications (SIMULTECH 2016), pp. 195–202,
July 2016.

31. S. Makbulolu and G. Geelen, “Capacity planning for active directory domain
services,” tech. rep., Technical report, Microsoft Corp, 2012.

32. M. Russinovich and D. Solomon, Windows Internals: Including Windows Server
2008 and Windows Vista. Microsoft Press, 5th ed., 2009.

33. C. van Rijsbergen, Information Retrieval. Newton, MA, USA: Butterworth-
Heinemann, 2nd ed., 1979.

34. G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical
Learning: With Applications in R. Springer Publishing Company, Incorporated,
2014.

95

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

15–09–2016 Master’s Thesis Sept 2015 — Sep 2016

Data Driven Device Failure Prediction

15G350

Jordan, Paul L, 1st Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-16-S-071

National Information Assurance Education and Training
Program
9800 Savage Road
Fort Meade, Maryland 20755-6744
410-854-6206
Email: gmellis@nsa.gov; aeshaff@nsa.gov

NIETP

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

As society becomes more dependent upon computer systems to perform increasingly critical tasks, ensuring those systems
do not fail also becomes more important. Many organizations depend heavily on desktop computers for day to day
operations. Unfortunately, the software that runs on these computers is still written by humans and as such, is still
subject to human error and consequent failure. A natural solution is to use statistical machine learning to predict failure.
However, since failure is still a relatively rare event, obtaining labelled training data to train these models is not trivial.
This work presents new simulated fault loads with an automated framework to predict failure in the Microsoft enterprise
authentication service and Apache web server in an effort to increase up-time and improve mission effectiveness. These
new fault loads were successful in creating realistic failure conditions that are accurately identified by statistical learning
models.

Thesis, Failure Prediction, Machine Learning

U U U U 106

Dr. G. Peterson, AFIT/ENG

(937) 255-3636 x4281 gilbert.peterson@afit.edu

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Hypothesis
	Research Goals
	Impact of Research
	Assumptions and Limitations
	Results
	Summary

	Overview of OFP
	Background
	Definitions

	Approaches to OFP
	OFP Taxonomy
	Data-Driven OFP
	Industry Approaches to OFP
	AFP Framework

	Summary

	Methodology
	Failure Data Generation
	Preparation Phase
	Execution Phase
	Training Phase

	Implementation of the AFP
	AFP Framework Implementation
	AFP Modules
	Controller Hypervisor
	Sandbox Hypervisor
	Target Hypervisor

	Extensions to the AFP
	Under-Resourced CPU
	Under-Resourced Memory
	Heap Space Corruption
	Reported Errors
	Summary

	Experimental Results and Analysis
	Performance Measures
	Precision and Recall
	FPR and Specificity
	NPV and Accuracy
	Precision/Recall Curve

	Results
	MS DC
	Web Server
	Summary

	Conclusion and Future Work
	Future Work
	Conclusion

	W-SWFIT Source Code
	ResourceLeak Source Code
	Windows Updates
	List of Abbreviations
	Bibliography

